期刊文献+

基于概率神经网络的风洞设备故障预测诊断方法 被引量:7

Fault Forecast and Diagnosis of Wind Tunnel Equipment Based on Probabilistic Neural Network
下载PDF
导出
摘要 针对风洞设备故障征兆与故障原因之间的非线性关系,提出基于概率神经网络的风洞设备故障预测诊断方法。利用概率神经网络强大的自主学习能力和较强的模式识别能力,来预测诊断风洞设备的故障原因,通过故障样本对概率神经网络进行训练,并对待测样本进行故障预测诊断。结果表明:概率神经网络能满足故障诊断快速和准确的要求,故障预测诊断精度较高,适用于在线检测,具有实际应用价值。 According to the nonlinear mapping relationship between fault symptom and wind tunnel equipment faults, fault forecast and diagnosis method was presented which is based on probabilistic neural network(PNN). By using the powerful self-learning ability and strong pattern recognition capability, the cause of the fault for the wind tunnel equipment is predicted. The sample of the fault is established and the PNN is trained based on the symptom diagnosis. The test sample is used to fault forecast and diagnosis. The result shows that PNN can meet the requirement for fast diagnosis rate and high diagnosis precision during fault diagnosis process, so PNN can be used in the real time diagnosis with application value.
出处 《兵工自动化》 2015年第10期72-75,共4页 Ordnance Industry Automation
关键词 PNN 风洞设备 故障预测诊断 PNN wind tunnel equipment fault forecast and diagnosis
  • 相关文献

参考文献6

二级参考文献28

  • 1路炜,文玉梅.供水管道泄漏定位中基于互谱的时延估计[J].仪器仪表学报,2007,28(3):504-509. 被引量:19
  • 2张德丰.MATLAB小波分析[M].北京:机械工业出版社,2008:50-51.
  • 3丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,2003..
  • 4徐东,吴铮.基于MATLAB6.x的系统分析与设计[M].西安:西安电子科技大学出版社,2002.
  • 5Specht D F. Probabilistic neural networks[J].Neural Networks,1990,1(3):109-118.
  • 6Raghu P P. Yegnanarayana B. Supervised texture classification using a probabilistic neural network and constraint satisfaction model[J]. IEEE Trans. On Neural networks, 1998,9(3):516-522.
  • 7CINCOT'I'I S, MARCHESI M, SERRI A. A neural network model of parametric non-linear hysteretic inductors [J]. IEEE Transactions on Magnetics, 1998, 34 (2) : 3040- 3043.
  • 8VECCHIO P D, SALVINI A. Neural network and fourrier descriptor macromodelin-g dynamic hysteresis [J]. IEEE IEEE Transactions on Magnetics, 2000, 36 (4) : 1246-1249.
  • 9MINCHEV S V. Neural networks for modeling of dynamic systems with hysteresis[ C ]//First International IEEE Sympo- sium "Inteligent Systems", 2002 : 42-47.
  • 10MAKAVEEV D, DUPRE L, DE W M,et al. Dynamic hyster- esis modeling using feedforward neural network [C]//In 15th Solft Magnetic Confenence Abstract, Bilbao, 2003: 256-258.

共引文献138

同被引文献84

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部