期刊文献+

多管程布置微通道分液冷凝器的热力性能 被引量:4

Effect of Tube Pass Arrangement on the Thermodynamic Performance of Liquid-vapor Separation Microchannel Condenser
下载PDF
导出
摘要 分液式微通道冷凝器(LSMC)是一种新型的微通道平行流冷凝器。本文通过理论计算并实验验证了不同管程布置方案LSMC的管内换热系数和压力降,并采用惩罚因子(PF)对其综合性能进行评价。结果表明:管程数(NP)和每管程换热管数(TNPP)对平行流冷凝器的热力性能都有明显影响。在完全分液效果下,优化的4、5管程LSMC的换热系数分别比3管程LSMC提高了5.7%和13.8%,而4、5管程LSMC的压降也分别比3管程LSMC增大超过23.5%和138.7%。与此比较,LSMC的传热系数和压降在不同TNPP的变化较小,说明优化区间内管程数比每管程换热管数对LSMC单一的热力性能影响更大。此外,实现完全分液的LSMC比部分分液的LSMC热力综合性能好。与实验值比较,LSMC理论传热系数和压降的最大偏差分别为25.6%和20.8%。 Liquid-vapor separation microchannel condenser (LSMC) is a novel microchannel condenser. This paper calculated heat transfer coefficient and pressure drop theoretically, and the theoretical results have been verified by experiments. Penalty factor (PF) was employed to evaluate the thermodynamic performance of the LSMC. The results showed number of pass (NP) and tube number per pass (TNPP) have obvious effect on the thermodynamic performance. Under the condition of completely liquid-vapor separation, the 4-tube- pass and 5-tube-pass LSMC showed 5.7% and 13.8% higher heat transfer coefficient than 3-tube-pass LSMC separately. In addition, the pressure drop of 4-tube-pass and 5-tube-pass LSMC is also 23.5% and 138.7% more than 3-tube-pass LSMC separately. In contrast, the TNPP showed a less effect on the heat transfer coefficient and pressure drop. It showed that the NP had a larger effeet on simplex perform- ance than the TNPP within the research scope. The thermodynamic performance for the LSMC with completely liquid-vapor separation was better than that with incompletely liquid-vapor separation. Compared with the experimental results, the theoretical heat transfer coefficient showed a maximum deviation of 25.6% and the theoretical pressure drop showed a maximum deviation of 20.8%.
出处 《制冷学报》 CAS CSCD 北大核心 2015年第5期30-36,共7页 Journal of Refrigeration
基金 国家自然科学基金(U0934006)资助项目~~
关键词 微通道分液冷凝器 管程组合 冷凝传热系数 惩罚因子 liquid-vapor separation microchannel condenser tube pass scheme heat transfer coefficient penalty factor
  • 相关文献

参考文献15

  • 1龚堰珏,张兴群,郑维智,项辉宇.汽车空调平行流式冷凝器热力性能计算机辅助分析[J].北京工商大学学报(自然科学版),2006,24(6):22-25. 被引量:21
  • 2Bullard C W, Practor J, Brezner J. Modeling and testing of a unity peak reducing sidential hot/dry air conditioner ( HDAC ) using microchannel heat exchangers [ J ]. ASHRAE Transfer, 2006, 112 : 162-170.
  • 3Yan Y Y, Lin T F. Condensation heat transfer and pressure drop of refrigerant R134a in a small pipe[ J]. International Journal of Heat and Mass Transfer, 1999, 42 (4) : 697- 708.
  • 4Kima N H, Cho J P, Kima J O, et al. Condensation heat transfer of R-22 and R.410A in flat aluminum multi-chan- nel tubes with or without micro-fins[ J ]. International Jour- nal of Refrigeration, 2003, 26(7) : 830-839.
  • 5Koyama S, Kuwahara K, Nakashita K, et al. An experi- mental study on condensation of refrigerant R134a in a multi-port extruded tube [ J ]. International Journal of Re- frigeration, 2003, 26(4) : 425-432.
  • 6Friedel L. Improved friction pressure drop correlation for horizontal and vertical two-phase pape flow[ R]. Ispra, It- aly: European Two-phase Flow Group Meeting, 1979.
  • 7Zhang M. A new equivalent Reynolds number model for vapor shear-controlled controlled condensation inside smooth and micro-fin tubes [ D ]. PA: Pennsylvania State College, 1998.
  • 8彭晓峰,贾力.等流速汽.水换热器:中国,02130914.0[P].2005-02-09.
  • 9陈二雄,陈颖,陈雪清.分液冷凝器的管程理论设计及热力性能评价[J].制冷学报,2012,33(6):19-25. 被引量:7
  • 10Chen Y, Hua N, Deng L S. Performances of a split-type air conditioner employing a condenser with liquid-vapor separation baffles [ J ]. International Journal of Refrigera- tion, 2012, 35(2) : 278-289.

二级参考文献18

  • 1史琳,付屹东,韩礼钟,朱明善.模拟分析R134a和R12在汽车空调“两器”中的换热[J].工程热物理学报,1996,17(2):146-149. 被引量:9
  • 2彭晓峰,吴迪,张扬.高性能冷凝器技术原理与实践[J].化工进展,2007,26(1):97-104. 被引量:41
  • 3Lee G H,Yoo J Y.Performance analysis and simulation of automobile air conditioning system[J].International Journal of Refrigeration,2000,23 (3):243-254.
  • 4Jabardo J M S,Mamani W G,Ianella M R.Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor[J].International Journal of Refrigeration,2002,25(8):1157-1172.
  • 5Can A,Buyruk E,Eryener D.Exergoeconomic analysis of condenser type heat exchangers[J].Exergy,2002,2(2):113-118.
  • 6Miyara A, Nonaka K, Taniguchi M. Condensation heat transfer and flow pattern inside a herringbone-type micro- fin tube[J]. Int.J. Refrigeration, 2000, 23 (2) : 141-152.
  • 7Cavallini A, Del Col D, Mancin S, et al. Condensation of pure and near-azeotropic refrigerants in microfin tubes: A new computational procedure[J]. Int. J. Refrigeration, 2009, 32 (1) : 162-174.
  • 8Y Taitel, A E Dukler. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE J., 1976, 22 (2):43-55.
  • 9O Baker. Design of pipelines for simultaneous flow of oil and gas [J]. Oil Gas, 1954, 53 (12) : 186-195.
  • 10Breber G, J Palen, J Taborek. Prediction of horizontal tube-side condensation of pure components using flow regime criteria[J]. Heat Transfer, 1980, 102 (3) : 471-476.

共引文献26

同被引文献83

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部