期刊文献+

基于光学和雷达图像的土地覆被分类 被引量:4

Land-cover Classification Based on HJ1B and ALOS Data
下载PDF
导出
摘要 为寻求一种有效的提高多源遥感数据土地覆被分类制图精度的方法,探讨了融合HJ1B和ALOS/PALSAR图像进行遥感图像分类制图的方法。在对光学图像HJ1B和雷达遥感数据ALOS/PALSAR进行离散小波融合的基础上,应用分类决策树CART(Classification and Regression Tree)算法对融合的图像进行了土地覆被分类制图,并将其分类结果与支持向量机SVM(Support Vector Machine)分类结果进行对比。研究结果表明:将光学和雷达图像数据进行离散小波融合,采用分类决策树CART和支持向量机SVM进行图像分类,CART的分类精度要优于SVM的结果。可见,在光学图像HJ1B和雷达数据ALOS/PALSAR融合的基础上,应用CART能有效进行地物识别,提高图像的分类精度。 In order to increase the accuracy of the land use and land cover (LULC)classification via multi-source remote sensing data,we explored an effective algorithm by fusion of HJ1B images from optical sensors and ALOS /PALSAR data from radar remote sensing.In the process of fusion,the discrete wavelet transform (DWT)was uti-lized.The land-cover classification mapping was performed by using the classification and regression tree (CART) approach.The classification result by CRT approach was compared with that by support vector machine (SVM)ap-proach.The results show that:1)through fusing HJ1B optical images with ALOS /PALSAR radar data,we obtain an overall Kappa coefficient (0.826 9)and total accuracy(85.60 %)by CRT approach,while by SVM approach the value is 0.816 7 and 84.82 %,respectively;2)in terms of classification accuracy,CRT approach is superior to SVM approach;3)by means of fusing optical images with radar data ,we can effectively carry out object recogni-tion and improve classification accuracy through applying CART approach.
出处 《长江科学院院报》 CSCD 北大核心 2015年第10期121-125,133,共6页 Journal of Changjiang River Scientific Research Institute
基金 国家自然科学基金项目(41261089 41201393) 宁夏自然科学基金项目(NZ12146)
关键词 环境卫星 雷达图像 图像融合 分类决策树 支持向量机 图像分类 environmental satellite radar image image fusion CART SVM image classification
  • 相关文献

参考文献16

  • 1SELLERS P J,MEESON B W,HALL F G,et al.Remote Sensing of the Land Surface for Studies of Global Change:Models,Algorithms,and Experiments[J].Remote Sensing of Environment,1995,51(1):3-26.
  • 2于秀兰,钱国蕙.TM和SAR遥感图像的不同层次融合分类比较[J].遥感技术与应用,1999,14(3):38-43. 被引量:11
  • 3KIEREIN-YOUNG K S.The Integration of Optical and Radar Data to Characterize Mineralogy and Morphology of Surfaces in Death Valley,California[J].International Journal of Remote Sensing,1997,18(7):1517-1541.
  • 4LARRAAGA A,LVAREZ-MOZOS J,ALBIZUA L.Crop Classification in Rain-fed and Irrigated Agricultural Areas Using Landsat TM and ALOS/PALSAR Data[J].Canadian Journal of Remote Sensing,2011,37(1):157-120.
  • 5WALKER W S,STICKLER C M,KELLNDORFER J M,et al.Large-area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon:A Comparative Analysis of ALOS/PALSAR and Landsat Data Sources[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(4):594-604.
  • 6FRIEDL M A,BRODLEY C E.Decision Tree Classification of Land Cover from Remotely Sensed Data[J].Remote Sensing of Environment,1997,61(3):399-409.
  • 7OTUKEI J R,BLASCHKE T.Land Cover Change Assessment Decision Trees,Support Vector Machines and Maximum Likelihood Classification Algorithms[J].International Journal of Applied Earth Observation and Geoinformation,2010,12(Supp.1):27-31.
  • 8BRUCE L M,KOGER C H,LI J.Dimensionality Reduction of Hyperspectral Data Using Discrete Wavelet Transform Feature Extraction[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(10):2331-2338.
  • 9RANCHIN,T,WALD L.Fusion of High Spatial and Spectral Resolution Images:The ARSIS Concept and Its Implementation[J].Photogrammetric Engineering and Remote Sensing,2000,66:49-61.
  • 10ALPARONE L S,BARONTI S,GARZELLI A,et al .Landsat ETM+ and SAR Image Fusion Based on Generalized Intensity Modulation[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(12):2832-2839.

二级参考文献52

共引文献181

同被引文献66

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部