摘要
为寻求一种有效的提高多源遥感数据土地覆被分类制图精度的方法,探讨了融合HJ1B和ALOS/PALSAR图像进行遥感图像分类制图的方法。在对光学图像HJ1B和雷达遥感数据ALOS/PALSAR进行离散小波融合的基础上,应用分类决策树CART(Classification and Regression Tree)算法对融合的图像进行了土地覆被分类制图,并将其分类结果与支持向量机SVM(Support Vector Machine)分类结果进行对比。研究结果表明:将光学和雷达图像数据进行离散小波融合,采用分类决策树CART和支持向量机SVM进行图像分类,CART的分类精度要优于SVM的结果。可见,在光学图像HJ1B和雷达数据ALOS/PALSAR融合的基础上,应用CART能有效进行地物识别,提高图像的分类精度。
In order to increase the accuracy of the land use and land cover (LULC)classification via multi-source remote sensing data,we explored an effective algorithm by fusion of HJ1B images from optical sensors and ALOS /PALSAR data from radar remote sensing.In the process of fusion,the discrete wavelet transform (DWT)was uti-lized.The land-cover classification mapping was performed by using the classification and regression tree (CART) approach.The classification result by CRT approach was compared with that by support vector machine (SVM)ap-proach.The results show that:1)through fusing HJ1B optical images with ALOS /PALSAR radar data,we obtain an overall Kappa coefficient (0.826 9)and total accuracy(85.60 %)by CRT approach,while by SVM approach the value is 0.816 7 and 84.82 %,respectively;2)in terms of classification accuracy,CRT approach is superior to SVM approach;3)by means of fusing optical images with radar data ,we can effectively carry out object recogni-tion and improve classification accuracy through applying CART approach.
出处
《长江科学院院报》
CSCD
北大核心
2015年第10期121-125,133,共6页
Journal of Changjiang River Scientific Research Institute
基金
国家自然科学基金项目(41261089
41201393)
宁夏自然科学基金项目(NZ12146)