期刊文献+

陆地生态系统甲烷产生和氧化过程的微生物机理 被引量:47

Microbial mechanisms of methane production and oxidation in terrestrial ecosystems
下载PDF
导出
摘要 陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。 Terrestrial ecosystems consist of oxic and anoxic environments. Anoxic environments can be permanent or temporary,and they include natural wetlands,paddy field soils,lake and river sediments, rumens, landfills, and anaerobic bioreactors. Large amounts of organic matter are released into these environments annually. Under anoxic conditions,organic matter is decomposed anaerobically,with methane( CH4) as the final product. CH4 can diffuse through the anoxic-oxic interface and enter the atmosphere,and can become a potent greenhouse gas. Methanogenesis appears to be the core process of organic matter decomposition in anoxic environments. Methane oxidation takes place actively in the anoxic-oxic interface through which CH4 diffuses. Microbial production and oxidation of CH4 in terrestrial ecosystems together regulate the atmospheric concentration of CH4 and contribute to a crucial part of global carbon cycling. In this review,we report the recent advances in the mechanistic understanding of microbial CH4 production and oxidation in terrestrial ecosystems. The major topics include: discovery of novel methanogens,particularly of the psychrophilic and acidophilic methanogens,and the 6thand 7thorders of methanogens; syntrophic interaction and direct interspecies electron transfer in the methanogenic oxidation of short-chain fatty acids; the discovery of novel methanotrophs,including anaerobic and aerobic verrucomicrobial methanotrophs; and the novel ecophysiological properties of methanotrophs. These advanceshave greatly increased our understanding of microbial CH4 production and oxidation in terrestrial ecosystems,and with the development of new methods and technologies,more breakthroughs are expected. We also propose a few perspectives for future studies.
机构地区 北京大学
出处 《生态学报》 CAS CSCD 北大核心 2015年第20期6592-6603,共12页 Acta Ecologica Sinica
基金 国家自然基金重点项目(41130527)
关键词 甲烷产生 甲烷氧化 微生物机理 新型产甲烷古菌 直接种间电子传递 methane production methane oxidation microbial mechanisms novel methanogens direct interspecies electron transfer(DIET)
  • 相关文献

参考文献91

  • 1IPCC. Climate Change 2013: The Physical Science Basis//Stocker T F, Qin D, Plattner G K, Tignor M, Alien S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 1-1535.
  • 2Manne A S, Richels R G. An alternative approach to establishing trade-offs among greenhouse gases. Nature, 2001, 410(6829) : 675-677.
  • 3蒋娜,陈紫娟,曹轶,田建卿,王艳芬,东秀珠.低温湿地甲烷古菌及其介导的甲烷产生途径[J].微生物学通报,2013,40(1):137-145. 被引量:15
  • 4Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 2009, 1 (5) : 285- 292.
  • 5Thauer R K. Functional ization of methane in anaerobic microorganisms. Angewandte C hemie International Edition, 2010, 49(38) : 6712-6713.
  • 6Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 1999, 28(3) : 193-202.
  • 7Huber R, Kurr M, Jannasch H W, Stetter K O. A novel group of abyssal methanogenic arehaebacteria (Methanopyrus) growing at 110 ~ C. Nature, 1989, 342(6251) : 833-834.
  • 8Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One, 2011, 6 (5) : e20453.
  • 9Akila G, Chandra T S. Performance of an UASB reactor treating synthetic wastewater at low-temperature using cold-adapted seed slurry. Process Biochemistry, 2007, 42(3): 466-471.
  • 10IPCC. Climate Change 2014: Mitigation of Climate Change//Edenhofer O, Pichs-Madruga R, Sokona Y, Minx J C, Farabani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlomer S, Von Stechow C, Zwickel T, eds. Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA : Cambridge University Press, Cambridge, 2014.

二级参考文献79

  • 1S. JIANG, M. HE, K. DONG, D. YUE, S. WU, G.XU, J.QIN, Q.YOU, Y.ZHENG, Y.GUAN, Q. LIANG, X. ZHAO, Q. WANG S. LIU(Department of Nuclear Physics, C1AE, Beijing 102413, China,Department of biology, Beijing Normal University, Beijing 100875, China,Department of Physics, Guangxi University, Nanning 530004, China,College of Public Health, Beijing University, Beijing 100083, China,College of Applied Arts and Science, Beijing Union University, Beijing 100083, China).The Measurement of ^(41)Ca and Its Application for Cell Messenger[J].Annual Report of China Institute of Atomic Energy,2002(0):59-60. 被引量:12
  • 2DING Wei-Xin CAI Zu-Cong.Methane Emission from Natural Wetlands in China:Summary of Years 1995-2004 Studies[J].Pedosphere,2007,17(4):475-486. 被引量:30
  • 3Houghton JT, Jenkins GJ, Ephraums JJ. Climate change: the IPCC scientific assessment. Intergovernmental panel on climate change, World Meteorological Organization, United Nations Environmental Program[R]. New York: Cambridge University Press, 1990.
  • 4Houghton JT, Filho MLG, Bruce J, et al. Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios[R]. New York: Cambridge University Press, 1995.
  • 5Stocker TF, Qin D, Plattner GK, et al. Climate change 2013: the physical science basis. Intergovernmental panel on climate change, working group I Contribution to the IPCC fifth assessment report (AR5)[R]. New York: Cambridge University Press, 2013.
  • 6Neue HU. Methane emission from rice fields[J]. Bioscience, 1993: 466-474.
  • 7Ebner R, Ellis S, Golunski S. Deactivation and durability of the catalyst for HotSpot natural gas processing[R]. ETSU Report No. F102/00l73, Energy Technology well, U.K, 2000.
  • 8Gunaseelan VN. Anaerobic digestion of biomass for methane production: a review[J]. Biomass and Bioenergy, 1997, 13(1): 83-114.
  • 9Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292.
  • 10Starns AIM. Metabolic interactions between anaerobic bacteria in methanogenic environments[J]. Antonie van Leeuwenhoek, 1994,66(1/3): 271-294.

共引文献63

同被引文献624

引证文献47

二级引证文献227

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部