摘要
数值流形方法(NMM)实现了对连续和非连续问题的统一求解,但前提是必须能够正确地生成物理覆盖和接触环路。首先,针对几何形态保持固定不变的模型,阐述了物理覆盖和接触环路生成的整个过程。其中,重点介绍了搜索环路的算法,这也是NMM前处理的核心算法。进而,基于更新物理片环路和接触环路的思想,提出了一种新颖的更贴近NMM本质的裂纹扩展时的物理覆盖和接触环路生成算法,理论上可适用于任意的裂纹扩展长度和允许裂纹尖端落在单元的任意位置,更大程度上摆脱了对于网格的依赖性。最后,通过一个多裂纹扩展算例证实了方法的鲁棒性和正确性。
The numerical manifold method has been successful in solving continuous and discontinuous problems in a unified way, but the precondition is to generate the physical cover and contact loops correctly. For problem domains invariant during analysis, at first, the generation process of the physical cover and contact loops is expounded, where an algorithm for searching for loops, as the core of NMM pre-processing, is emphasized. Furthermore, a new algorithm much closer to the nature of NMM for the generation of physical cover and contact loops during the crack growth is proposed based on the concept of updating physical patch loops and contact loops. In theory, it is suitable for the cases of arbitrary crack growth length, and the crack tips are allowed to stop at any point of the manifold element, which has eliminated the mesh dependence to a great degree. Finally, the robustness and correctness of the proposed method is confirmed by an example of multiple crack growth.
出处
《岩土工程学报》
EI
CAS
CSCD
北大核心
2015年第10期1865-1875,共11页
Chinese Journal of Geotechnical Engineering
基金
国家自然科学基金项目(11172313
51179014)
国家重点基础研究发展计划("973"计划)项目(2011CB013505
2014CB047100
2011CB710603)
关键词
数值流形法
物理片
物理覆盖
数学片
数学覆盖
物理片环路
接触环路
多裂纹扩展
numerical manifold method
physical patch
physical cover
mathematical patch
mathematical cover
physical patch loop
contact loop
multiple crack growth