期刊文献+

小型超高压装置的设计原理及研究进展 被引量:2

Design Theory,Research and Development of Miniature Ultra-High Pressure Devices
原文传递
导出
摘要 高压研究对于寻找高压新相、制备新材料、探索地球深部奥秘具有重要的意义,但高压研究的发展却受到高压技术水平的制约。针对小型超高压装置,简要回顾了普遍使用的金刚石对顶砧(Diamond Anvil Cell,DAC)、Paris-Edinburgh Press(P-E型压力装置)的发展历史,论述了DAC、P-E型压力装置、Palm Cubic-Anvil Cell(P-CAC)、Miniature Cubic-Anvil Cell(M-CAC)等小型超高压装置的设计原理与研究进展,总结了小型高压装置存在的问题,并对其发展趋势进行了展望。 High pressure research is of great importance to the crucial information for many scientific and industrial applications,such as high pressure phase state,synthetic materials and recreating conditions deep inside the earth.Generally,the development of high pressure research is limited by the level of high pressure technology.In this paper,the history of diamond anvil cell(DAC)and Paris-Edinburgh(P-E)press were reviewed firstly.Secondly,the design theory,research,and development of miniature ultra-high pressure devices were studied in detail,including DAC,P-E press,palm cubic-anvil cell(P-CAC),and miniature cubicanvil cell(M-CAC).Finally,the problems and future development of the science and technologies for the miniature high pressure devices were summarized,which gives a suggestion on the new design of ultra-high pressure apparatus.
出处 《高压物理学报》 CAS CSCD 北大核心 2015年第5期337-346,共10页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金(11204102,51475207) 高等学校博士学科点新教师基金(20120061120041) 吉林大学超硬材料国家重点实验室开放课题资助项目(201410)
关键词 小型超高压装置 金刚石对顶砧 P-E型压力装置 高压技术 miniature high pressure device diamond anvil cell P-E press high pressure technology
  • 相关文献

参考文献69

  • 1Liu J, Lin J F, Prakapenka V B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier [J]. Sci Rep, 2015,5 : 7640.
  • 2Anzellini S,Dewaele A, Mezouar M, et al. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction [J]. Science,2013,340(6131) :464-466.
  • 3Lin J F,Wu J, Zhu J,et al. Abnormal elastic and vibrational behaviors of magnetite at high pressures [J]. Sci Rep, 2014,4:6282.
  • 4Takahashi H,Soeda H, Nukii M, et al. Superconductivity at 52 K in hydrogen-substituted LaFeAsO-r Hx under high pressure [J]. Sci Rep, 2015,5 : 7829.
  • 5Yang W, Huang X, Harder R,et al. Coherent diffraction imaging of nanoscalc strain evolution in a single crystal under high pressure [J]. Nature Commun, 2013,4 : 1680.
  • 6Zhou W, Chen X J, Zhang J B, et al. Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure [J]. Sci Rep, 2014,4 : 6472.
  • 7Pan D,Wan Q,Galli G. The refractive index and electronic gap of water and ice increase with increasing pressure [J]. Nature Commun, 2014,5 : 3919.
  • 8Xie H,Yin F, Yu T, et al. Mechanism for direct graphite-to-diamond phase transition [J]. Sci Rep,2014,4:5930.
  • 9Kong P P,Sun F, Xing L Y,et al. Superconductivity in strong spin orbital coupling compound Sb2 Se3 [J]. Sci Rep, 2014,4:6679.
  • 10Smedskjaer M M, Youngman R E, Striepe S, et al. Irreversibility of pressure induced boron speciation change in glass [J]. Sei Rep,2014,4 : 3770.

二级参考文献98

共引文献67

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部