期刊文献+

碳纤维增强复合材料单向层合板直角自由切削热特性试验 被引量:6

Test on thermal characteristics when orthogonally free machining carbon fiber reinforced plastic unidirectional laminates
原文传递
导出
摘要 为揭示碳纤维增强复合材料(CFRP)切削温度与切削要素之间的关系,采用直角自由切削对CFRP单向层合板进行了切削试验,并采用OMEGA-0.05mm高灵敏K型热电偶对切削温度进行测量,讨论了切削参数、刀具几何参数及材料参数对切削温度的影响。结果表明:对切削温度的影响程度由高到低的参数依次为切削速度、切削厚度、刀具后角和钝圆半径,切削参数对温度的影响效应不受纤维方向角的影响;不同于金属材料,CFRP纤维方向角对切削温度影响突出,顺纤维方向上的切削温度明显高于逆纤维方向上的,切削温度在θ=90°时达到最大值,且为θ=0°时的2倍;CFRP切削回弹对刀具后刀面与已加工表面的接触状况影响较大,从而影响切削温度,加剧了切削温度的各向异性特征,且第3变形区切削热对切削温度影响突出;CFRP切削温度范围窄,最大切削温度在300℃左右,将导致切削质量对温度变化更为敏感。 In order to reveal the relationship between the cutting temperature in machining carbon fiber reinforced plastic (CFRP) and the cutting factors, orthogonally free machining tests on CFRP unidirectional laminates were conducted. The cutting temperature was measured using OMEGA-0.05 mm K type high sensitive thermocouple. Discussions were made about the effects of cutting parameters, geometric parameters of tools and material parame- ters on cutting temperature. The results show that cutting speed, cutting thickness, relief angle of tool and blunt ra- dius, in the sequence of descending, have great influence on cutting temperature. The influence of cutting parame- ters on the temperature is not affected by the fiber orientation angle. Unlike metal materials, the cutting temperature is greatly influenced by CFRP fiber orientation angle. The cutting temperature cut along fiber orientation is signifi- cantly higher than that opposite fiber orientation. The maximum cutting temperature is present to the fiber orientation angle of 90° , and the cutting temperature at the fiber orientation angle of 90°is 2 times of that at the fiber orientation angle of 0°. The spring back of CFRP has great influence on the contact condition between the tool flank and the machined surface, which will affect the cutting temperature eventually. This has exacerbated the anisotropy of the cutting temperature. Moreover, the heat in the third deformation zone has prominent effect on cutting temper- ature. CFRP has a narrow cutting temperature range, maximum cutting temperature is about 300℃, which will make cutting quality more sensitive to temperature changes.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2015年第5期1469-1479,共11页 Acta Materiae Compositae Sinica
基金 国家"863"计划(2013AA040104) 国家自然科学基金(51105253 51475298)
关键词 各向异性 碳纤维增强复合材料 纤维方向角 切削温度 刀具几何参数 anisotropy carbon fiber reinforced plastic fiber orientation angle cutting temperature tool geometricparameters
  • 相关文献

参考文献13

  • 1叶列平,冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24-36. 被引量:623
  • 2陈绍杰.论我国先进复合材料产事业的发展[J].高科技纤维与应用,2013,38(1):1-11. 被引量:13
  • 3Teti R. Machining of composite materials[J]. CIRP Annals - Manufacturing Technology, 2002, 51(2): 611-634.
  • 4Abrao A M, Faria P E, Rubio J C, et al. Drilling of fiber re- inforced plastics: A review[J]. Journal of Materials Process ing Technology, 2007, 186 (1-3) : 1-7.
  • 5Komanduri R. Machining of fiber-reinforced composites[J]. Machining Science and Technology, 1997, 1 (1): 113 -152.
  • 6Liu D F, Tang Y J, Cong W L. A review of mechanical drill- ing for composite laminates[J]. Composite Structures, 2012, 94(4) : 1265-1279.
  • 7Taylor G I, Quinney H. The latent energy remaining in a metal after cold working[J]. Proceedings of the Royal Society of London. Series A, 1934, 143(849): 307-326.
  • 8Griffis C A, Masumura R A, Chang C I. Thermal response ot" graphite epoxy composite subjected to rapid heating[J]. Journal of Composite Materials, 1981, 15(5) : 427-442.
  • 9McManus H L N, Springer G S. High temperature thermo- mechanical behavior of carbon-phenolic and carbon-carbon composites, I. analysis[J]. Journal of Composite Materials, 1992, 26(2): 206-229.
  • 10Konig W, Grass P. Quality definition and assessment in drill- ing of fibre reinforced thermosets[J]. CIRP Annals-Manufac- turing Technology, 1989, 38 (1): 119-124.

二级参考文献66

  • 1沙吾列提.拜开依,叶列平,杨勇新,庄江波.预应力CFRP布加固钢筋混凝土梁的施工技术[J].施工技术,2004,33(6):23-24. 被引量:34
  • 2汤国栋,汤羽,冯广占.中国GRP/COM桥梁的研究与实践[J].成都科技大学学报,1995(6):69-80. 被引量:9
  • 3Yang Q S, Qin Q H, Zheng D H. Analytical and numerical investigation of interfacial stresses of FRP-concrete hybrid structure[J]. Composite Structures, 2002, 57:221-226
  • 4Davol A, Burgueno R, Seible F. Flexural behavior of circular concrete filled FRP shells [J]. Journal of Structural Engineering, ASCE, 2001, 127 (7): 810-817
  • 5Teng JG, Yao J. Self-weight buckling of FRP tubes filled with wet concrete [J]. Thin-walled Structures, 2000, 38(4): 337-353
  • 6Hollaway L C. The evolution of the way forward for advanced polymer composites in the civil infrastructure[C ]//Proc. the International Conference on FRP Composites in Civil Engineering. Hong Kong: Elsevier Science Ltd, 2001:27-40
  • 7Feng P, Ye L P, Bao R, et aL Development and analysis of the large-span FRP woven web structure [ C ]//Proceedings of 2nd International Conference on FRP Composites in Civil Engineering. Adelaide, Australia: 2004, 12: 8-10, 865-871
  • 8Keller T. Fibre Reinforced Polymer Materials in Bridge Construction [C/CD]//Proc. IABSE Symposium. Melbourne,Australia: IABSE, 2002
  • 9Firth I, Cooper D. Glass Fibre Reinforced Plastic Bridges-Three UK Examples [C/CD]//Proc. IABSE Symposium.Melbourne, Australia: IABSE, 2002
  • 10Sobrino J A, Pulido M D G. A new glass-fibre-reinforced arch bridge in Spain [C/CD] //Proc. IABSE Symposium.Melbourne, Australia: IABSE, 2002

共引文献633

同被引文献103

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部