期刊文献+

线性不动点近邻嵌入分析方法 被引量:1

Linear Fix-Point Neighbor Embedding Analysis Method
下载PDF
导出
摘要 针对t分布随机近邻嵌入分析方法(t-SNE)存在的样本外问题和实际应用中利用快速下降法进行梯度最优化过程时多参数设定及调整的不可行性,提出线性不动点近邻嵌入分析方法.该方法在t-SNE的基础上引入线性投影变换矩阵,揭示数据的本质低维结构,然后在最小化原空间和子空间两个概率分布的KL散度准则下建立目标函数.通过简单不动点迭代法求解目标函数的最小值,有效提高t-SNE迭代最优过程的效率和鲁棒性.在人工合成数据和COIL-20图像库上的实验表明,文中方法具有较好的可视化能力. To solve the out-of-sample problem of t-distributed stochastic neighbor embedding (t-SNE) analysis method and overcome the unfeasibility of manually adjusting the involved parameters in practice, a linear fix-point neighbor embedding (LFNE) analysis method is proposed based on a fix-point optimization algorithm. Based on t-SNE, the linear projection matrix is introduced to reveal the underlying structure of data manifold in LFNE. Then, the penalty function is built by minimizing the Kullback-Leibler divergence of original space and subspace. Furthermore, the efficiency and the robustness of LFNE optimization are improved by the fix-point optimization algorithm. The proposed method is evaluated on artificial synthetic data and COIL-20 database. Experimental results demonstrate the better effectiveness of visualization by LFNF.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第10期896-902,共7页 Pattern Recognition and Artificial Intelligence
基金 "十二五"国家科技支撑计划项目(No.2012BAD10B01) 国家自然科学基金项目(No.61379123) 浙江省自然科学基金项目(No.LY15F030014)资助
关键词 随机近邻嵌入 降维 数据可视化 Stochastic Neighbor Embedding, Dimensionality Reduction, Data Visualization
  • 相关文献

参考文献15

  • 1McCandless D. Information Is Beautiful. Cork, Republic of Ireland : Collins, 2010.
  • 2Alfaro C A, Aydin B, Valencia C E, et al. Dimension Reduction in Principal Component Analysis for Trees. Computational Statistics and Data Analysis, 2014, 74 : 157-179.
  • 3Ye Q L, Zhao C X, Zhang H F, et al. Recursive " Concave-Con- vex" Fisher Linear Discriminant with Applications to Face, Hand- written Digit and Terrain Recognition. Pattern Recognition, 2012, 45 ( 1 ) : 54-65.
  • 4Xiao Y C, Wang H G, Xu W L, et al. L1 Norm Based KPCA for Novelty Detection. Pattern Recognition, 2013, 46( 1 ) : 389-396.
  • 5Liu J, Zhao F, Liu Y. Learning Kernel Parameters for Kernel Fisher Diseriminant Analysis. Pattern Recognition Letters, 2013, 34 (9) : 1026-1031.
  • 6Jin L, Huang Y. A Particle Swarm Optimization-Neural Network Prediction Model for Typhoon Intensity Based on Isometric Mapping Algorithm//Proc of the 5th International Joint Conference on Com- putational Sciences and Optimization. Harbin, China, 2012:857-861.
  • 7Daza-Santacoloma G, Castellanos-Dominguez G, Prineipe J C. Locally Linear Embedding Based on Correntropy Measure for Visualization and Classification. Neurocomputing, 2012, 80 : 19-30.
  • 8Yin X S, Cben S G, Hu E L. Regularized Soft K-means for Discri- minant Analysis. Neurocomputing, 2013, 103 : 29-42.
  • 9Li H S, Jiang H, Barrio R, et al. Incremental Manifold Learning by Spectral Embedding Methods. Pattern Recognition Letters, 2011, 32(10) : 1447-1455.
  • 10Li F, Tang B P, Yang R S. Rotating Machine Fault Diagnosis Using Dimension Reduction with Linear Local Tangent Space Alignment. Measurement, 2013, 46(8) : 2525-2539.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部