期刊文献+

基于Log-Gabor滤波与黎曼流形学习的图像识别算法 被引量:8

Image Recognition Algorithm Based on Log-Gabor Wavelet and Riemannian Manifold Learning
下载PDF
导出
摘要 在图像识别的研究中,黎曼流形学习不能有效消除图像中的冗余信息.基于上述原因,文中提出基于LogGabor滤波与黎曼流形学习的图像识别算法.首先使用Log-Gabor滤波器处理图像,获得维数较高的Log-Gabor图像特征,然后使用黎曼流形学习降维图像特征.研究表明,Log-Gabor滤波与黎曼流形学习的融合算法符合人类视觉感知的过程.文中算法对于光照、角度变化具有较好的鲁棒性,在多个标准数据库上的仿真实验验证文中算法的有效性. In image recognition applications, Riemannian manifold learning algorithms can not eliminate the redundant information in images effectively. Therefore, an image recognition algorithm based on Log-Gabor wavelet and Riemannian manifold learning is presented. Firstly, images are processed by the Log-Gabor filter to obtain high-dimensional Log-Gabor image features. Then, the Riemannian manifold learning algorithm is used to reduce the dimensionality of the image features. Research shows that the integration of Log-Gabor wavelet and Riemannian manifold learning is in accord with the process of human visual perception. The proposed algorithm has better robustness to illumination and angle variation of the image. Experimental results on several standard databases indicate the effectiveness of the proposed algorithm.
作者 刘元 吴小俊
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第10期946-952,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61373055) 高等学校博士学科点专项科研基金项目(No.20130093110009)资助
关键词 黎曼流形学习 图像识别 Log—Gabor 测地线距离 Riemannian Manifold Learning, Image Recognition, Log-Gabor, Geodesic Distance
  • 相关文献

参考文献3

二级参考文献29

  • 1万峰,杜明辉.小样本条件下采用Gabor特征的人脸识别[J].计算机辅助设计与图形学学报,2005,17(2):197-201. 被引量:6
  • 2聂祥飞,郭军.利用Gabor小波变换解决人脸识别中的小样本问题[J].光学精密工程,2007,15(6):973-977. 被引量:20
  • 3Turk M,Pentland A.Eigenfaces for recognition[J].Journal of cognitive Neuroscience,1991,3(1):72-86.
  • 4Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection[J].IEEE Trans.on Pattern Analysis and machine Intelligence,1997,19(7):711-720.
  • 5Tenenbaum J B,de Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 6Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 7Belkin M.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 8Cai Deng,He Xiao-fei,Han Jia-wei.Isometric projection[C] ∥Proceedings of AAAI'2007.Vancouver,British Columbia,2007:528-533.
  • 9He Xiao-fei,Cai Deng,Yan Shui-cheng,et al.Neighborhood preserving embedding[C] ∥Tenth IEEE International Conference on Computer Vision.Beijing,China,2005:1208-1213.
  • 10He Xiao-fei,Yan Shui-cheng.Face recognition using laplacian-faces[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.

共引文献82

同被引文献49

引证文献8

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部