期刊文献+

Role of oxygen defects in inducing the blue photoluminescence of zinc oxide films deposited by magnetron sputtering

Role of oxygen defects in inducing the blue photoluminescence of zinc oxide films deposited by magnetron sputtering
原文传递
导出
摘要 A number of zinc oxide(Zn O) films are deposited on silicon substrates using the magnetron sputtering method.After undergoing thermal treatment under different conditions, those films exhibit hexagonal wurtzite structures and different photoluminescent characteristics. Besides the notable ultraviolet emission, which is related to the free exciton effect, a distinct blue fluorescence around 475 nm is found in some special samples.The blue photoluminescence emission of the Zn O film is believed to be caused by oxygen vacancies. A number of zinc oxide(Zn O) films are deposited on silicon substrates using the magnetron sputtering method.After undergoing thermal treatment under different conditions, those films exhibit hexagonal wurtzite structures and different photoluminescent characteristics. Besides the notable ultraviolet emission, which is related to the free exciton effect, a distinct blue fluorescence around 475 nm is found in some special samples.The blue photoluminescence emission of the Zn O film is believed to be caused by oxygen vacancies.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第10期95-98,共4页 中国光学快报(英文版)
基金 supported by the Natural Science Foundation of Shanghai (No. 13ZR1402600) the National Natural Science Foundation of China (No. 60578047) the National "973" Program of China (Nos. 2012CB934303 and 2009CB929201) the Shanghai Commission of Science and Technology (No. 06DJ14007) the National "02" Project of China (No. 2011ZX02402) the Natural Science Foundation of Shandong Province (No. 2011ZRFL019)
关键词 magnetron sputtering hexagonal exciton ultraviolet annealing defects annealed crystalline inducing magnetron sputtering hexagonal exciton ultraviolet annealing defects annealed crystalline inducing
  • 相关文献

参考文献27

  • 1C. G. Van de Walle, Phys. B 308–310, 899 (2001).
  • 2A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
  • 3Z. Wang, D. Wang, F. Huang, and F. Xu, Chin. Opt. Lett. 12, 093101 (2014).
  • 4M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P.-D. Yang, Science 292, 1897 (2001).
  • 5H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, Phys. Rev. Lett. 84, 5584 (2000).
  • 6J. J. Cole, X. Y. Wang, R. J. Knuesel, and H. O. Jacobs, Nano Lett. 8, 1477 (2008).
  • 7Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, and H. F. Xu, Nat. Mater. 2, 821 (2003).
  • 8A. Thankappan, S. Thomas, and V. P. N. Nampoori, Chin. Opt. Lett. 11, 101801 (2013).
  • 9K. Johnston, M. Henry, D. McCabe, E. McGlynn, M. Dietrich, E. Alves, and M. Xia, Phys. Rev. B 73, 165212 (2006).
  • 10A. Teke, U. Ozgür, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. Everitt, Phys. Rev. B 70, 195207 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部