期刊文献+

Magnetic Helical Micro-and Nanorobots:Toward Their Biomedical Applications 被引量:9

Magnetic Helical Micro-and Nanorobots:Toward Their Biomedical Applications
下载PDF
导出
摘要 Magnetic helical micro- and nanorobots can perfo rm 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields(< 10 m T). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications. Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub- micrometer precision under low-strength rotating magnetic fields (〈 10 rer). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/ nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.
出处 《Engineering》 SCIE EI 2015年第1期21-26,共6页 工程(英文)
关键词 生物医学应用 纳米机器人 螺旋 细胞操作 微创手术 运动控制 低强度 亚微米 magnetic helical micro/nanorobots, mobilemicro/nanorobots, artificial bacterial flagella (ABFs),functionalization, biomedical applications
  • 相关文献

参考文献31

  • 1B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally inva- sive medicine. Annu. Rev. Biomed. Eng., 2010, 12(1): 55-85.
  • 2W. Gao, J. Wang. The environmental impact of micro/nanomachines: A review. ACS Nano, 2014, 8(4): 3170-3180.
  • 3L. Zhang, K. E. Peyer, B. J. Nelson. Artificial bacterial flagella for microma- nipulation. Lab Chip, 2010, 10(17): 2203-2215.
  • 4J. J. Abbott, et al. How should microrobots swim? Int. ]. Robot. Res., 2009, 28(11-12): 1434-1447.
  • 5E. M. Purcell. Life at low Reynolds number. Am. ]. Phys., 1977, 45(1): 3-11.
  • 6H. C. Berg, R. A. Anderson. Bacteria swim by rotating their flagellar fila- ments. Nature, 1973, 245(5425): 380-382.
  • 7T. Baba, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2(1): 2006.0008.
  • 8W. R. DiLuzio, et al. Escherichia coli swim on the right-hand side. Nature, 2005, 435(7046): 1271-1274.
  • 9K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, B. J. Nelson. Magnetic helical mi- cromachines. Chemi. Eur. ]., 2013,19(1): 28-38.
  • 10K. E. Peyer, L. Zhang, B. J. Nelson. Bio-inspired magnetic swimming mi- crorobots for biomedical applications. Nanoscale, 2013, 5(4): 1259-1272.

同被引文献48

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部