期刊文献+

3D Photo-Fabrication for Tissue Engineering and Drug Delivery 被引量:6

3D Photo-Fabrication for Tissue Engineering and Drug Delivery
下载PDF
导出
摘要 The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix(ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photofabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics. The most promising strategies in tissue engineering involve the integration of a triad of biomaterials, living cells, and biologically active molecules to engineer synthetic environments that closely mimic the healing milieu present in human tissues, and that stimulate tissue repair and regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native extracellular matrix (ECM) on a cellular and subcellular scale. Photo-fabrication techniques have already been used to generate 3D environments with precise architectures and heterogeneous composition, through a multi-layer procedure involving the selective photocrosslinking reaction of a light-sensitive prepolymer. Cells and therapeutic molecules can be included in the initial hydrogel precursor solution, and processed into 3D constructs. Recently, photo- fabrication has also been explored to dynamically modulate hydrogel features in real time, providing enhanced control of cell fate and delivery of bioactive compounds. This paper focuses on the use of 3D photo-fabrication techniques to produce advanced constructs for tissue regeneration and drug delivery applications. State-of-the-art photo-fabrication techniques are described, with emphasis on the operating principles and biofabrication strategies to create spatially controlled patterns of cells and bioactive factors. Considering its fast processing, spatiotemporal control, high resolution, and accuracy, photo-fabrication is assuming a critical role in the design of sophisticated 3D constructs. This technology is capable of providing appropriate environments for tissue regeneration, and regulating the spatiotemporal delivery of therapeutics.
出处 《Engineering》 SCIE EI 2015年第1期90-112,共23页 工程(英文)
基金 support of the Portuguese Foundation for Science and Technology (FCT) through the strategic project UID/Multi/04044/2013 the FCT for the doctoral grant SFRH/BD/91151/2012
关键词 三维结构 照片制作 组织工程 传递 药物 生物活性分子 生物活性化合物 合成环境 3D photo-fabrication, biomaterials, tissueengineering, drug delivery
  • 相关文献

参考文献169

  • 1F. E W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci., 2012, 37(8): 1079-1104.
  • 2A. Ranga, M. P. Lutolf. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol., 2012, 24(2): 236 -244.
  • 3A. Khademhosseini, R. Langer, J. Borenstein, J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U.S.A., 2006,103(8): 2480-2487.
  • 4R. S. Tuan, G. Boland, R. Tuli. Adult mesenchymal stem cells and cell- based tissue engineering. Arthritis Res. Ther., 2003, 5(1): 32-45.
  • 5D. J. Newman, G. M. Cragg. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3): 311-335.
  • 6P. X. Ma. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2): 184-198.
  • 7R. F. Pereira, C. C. Barrias, E L. Granja, P. J. Bartolo. Advanced biofabrica- tion strategies for skin regeneration and repair. Nanomedicine (Lond), 2013, 8(4): 603-621.
  • 8R. Passier, L. W. van Laake, C. L. Mummery. Stem-cell-based therapy and lessons from the heart. Nature, 2008, 453(7193): 322-329.
  • 9R. S. Kirsner, W. A. Marston, R. J. Snyder, T. D. Lee, D. I. Cargill, H. B. Slade. Spray-applied cell therapy with human allogeneic flbroblasts and keratinocytes for the treatment of chronic venous leg ulcers: A phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet, 2012, 380(9846): 977-985.
  • 10P. J. Brtolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Bioman- ufacturing for tissue engineering: Present and future trends. Virtual Phys. Prototyp., 2009, 4(4): 203-216.

同被引文献15

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部