摘要
充分挖掘降雨变量语法信息,利用基于差异序列信息熵测度理论的遗传算法聚类分析方法,对淮河流域蚌埠站以上区域99个雨量站进行了分区研究。根据各子区域内雨量站降雨序列差异测度得到最优分区,从而使得降雨信息在区域内具有较大的同质性。最后,以插值精度为标准,将不分区的情况为参照对象,对2、4、8三种分区结果进行校验,结果显示,相对于不分区,分区明显提升了降雨插值的精度。
This paper fully dug the grammatical information of the rainfall as a variable, used the way of genetic algorithm cluster-ing based on diversity sequence information entropy measure theory; and made regionalization research on the 99 precipitation sta-tions above the Bengbu Station in the Huaihe River Basin. The optimal classification was obtained based on the measures of the rainfall sequences of the precipitation stations in the various sub-regions. Therefore, the research objective of high homogeneity a-mong the rainfall information in the sub-regions was achieved. Finally, the 3 classifications of 2, 4 and 8 were checked by using the accuracy of interpolation, and taking un-categorization as reference object. The results show that the classification can improve the accuracy of rainfall interpolation.
出处
《水文》
CSCD
北大核心
2015年第5期11-14,29,共5页
Journal of China Hydrology
基金
江苏省自然科学基金项目(BK20131135)
关键词
降雨
差异序列信息熵
区域划分
遗传算法
rainfall
diversity sequence information entropy
regionalization
genetic algorithm