期刊文献+

基于KPCA和Cam加权距离的带钢热镀锌生产过程监测

Based on KPCA and Cam weighted distance of strip hot dip galvanizing production process monitoring
下载PDF
导出
摘要 针对复杂生产过程存在着参数众多,而且工艺参数间、产品质量参数间各自呈现复杂的多变量非线性耦合关系,提出基于KPCA的非线性生产过程监控与诊断方法。结合数据重构和基于Cam加权距离的领域选取策略这两种方法,计算出故障指数的变化情况,具体分析引起过程异常的工艺参数。利用冷轧带钢热镀锌生产线的生产数据进行实验,实验表明:KPCA具有处理非线性的能力,且能准确地实现对故障的识别。 According to huge mass of parameters in complicated production process,which shows a complex multivariable nonlinear coupling relation between each processing parameters and product quality parameters,this paper proposed a method based on KPCA nonlinear monitoring and diagnosis.Combined with the data reconstruction and field selection,obtained the function of various process parameters for SPE statistics,specifically analysis process parameters that causes abnormal process.Using data of hot-dip galvanizing prove that this method not only retains the advantages of PCA,also has ability of dealing non-linear parameters,and even could identify fault.
出处 《汽车实用技术》 2015年第10期86-88,92,共4页 Automobile Applied Technology
关键词 非线性 核主成分分析 SPE 故障诊断 nonlinear KPCA SPE fault diagnosis
  • 相关文献

参考文献4

二级参考文献36

  • 1GOOD R P,KOST D,CHERRY G A.Introducing a unified PCA algorithm for model size reduction[J].IEEE Transactions on Semiconductor Manufacturing,2010,23(2):201-209.
  • 2ULFARSSON M O,SOLO V.Sparse variable PCA using geodesic steepest descent[J].IEEE Transactions on Signal Processing,2008,56(12):5823-5832.
  • 3PENG De-zhong,ZHANG Yi.Dynamics of generalized PCA and MCA learning algorithms[J].IEEE Transactions on Neural Networks,2007,18(6):1777-1784.
  • 4CHAMUNDEESWARI V V,SINGH D,SINGH K.An analysis of texture measures in PCA-based unsupervised classification of SAR images[J].IEEE Geoscience and Remote Sensing Letters,2009,6(2):214-218.
  • 5CHO H C,KNOWLES J,FADALI M S,LEE K S.Fault detection and isolation of induction motors using recurrent neural networks and dynamic Bayesian modeling[J].IEEE Transactions on Control Systems Technology,2010,18(2):430-437.
  • 6DIDIER G,TERNISIEN E,CASPARY O,RAZIK H.Fault detection of broken rotor bars in induction motor using a global fault index[J].IEEE Transactions on Industry Applications,2006,42(1):79-88.
  • 7DE ANGELO C H,BOSSIO G R,GIACCONE S J,VALLA M I,SOLSONA J A,GARCIA G O.Online model-based stator-fault detection and identification in induction motors[J].IEEE Transactions on Industrial Electronics,2009,56(11):4671 -4680.
  • 8KIM K,PARLOS A G,MOHAN-BHARADWAJ R.Sensorless fault diagnosis of induction motors[J].IEEE Transactions on Industrial Electronics,2003,50(5):1038-1051.
  • 9ZIDNI F,BENBOUZID M E H,DIALLO D,NAIT-SAID M S.Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system[J].IEEE Transactions on Energy Conversion,2003,18(4):469-475.
  • 10HAJI M,TOLIYAT H A.Pattern recognition桝 technique for induction machines rotor broken bar detection[J].IEEE Transactions on Energy Conversion,2001,16(4):312-317.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部