期刊文献+

基于用户web日志分析的推荐系统的应用研究

Study on Application of Recommender System Based on User Web Log Analysis
下载PDF
导出
摘要 为了将用户感兴趣的各种资讯信息主动推荐给用户,提出了一个推荐算法权重公式,改进了基于用户的协同过滤算法,设计出了通用的推荐系统原型架构,并分析了今后的研究方向。 Recommender systems have been proved to be a valuable means for online users to deal with the information overload and have become one of the most powerful and popular tools. A power function of recommender system algorithm was proposed. The collaborative filtering algorithm based on user web log analysis was improved, and the prototype scheme of the recommender system was designed. The direction of study in future was analysed.
出处 《军民两用技术与产品》 2015年第19期58-60,共3页 Dual Use Technologies & Products
关键词 推荐系统 协同过滤 网络日志分析 军工 Recommender system, Collaborative filtering algorithm, Web log analysis, Military industry
  • 相关文献

参考文献6

  • 1Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook[A]. Recommender Systems Handbook[M]. New York, 2011.
  • 2Haubl G, Trifts V. Consumer decision making in online shopping environments: The effects of interactive decision aids [J]. Marketing Science, 2000, 19(1): 4 - 21.
  • 3Burke, R. Hybrid web recommender systems. The Adaptive Web [M]. Springer Berlin/Heidelberg, 2007.
  • 4lskold A. The art, science and business of recommendation engines[EB/OL]. [2014-02-28]. http://readwrite. com/2007/01 / 1 6/recommendation engines.
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Trans. on Knowledge and Data Engineering (TKDE), 2005, 17(6): 734 - 749.
  • 6刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:433

二级参考文献96

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献432

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部