期刊文献+

模式识别技术在人民币检伪中的应用研究 被引量:2

The Study of the Pattern Recognition Technology in RMB Identification
下载PDF
导出
摘要 纸币的防伪与检伪水平关系着国家的金融安全,研究模式识别技术在人民币检伪中的应用,是为了探究如何不断提高人民币真伪判定的准确率,从而为相关的设备开发奠定基础。首先对模式识别技术做了简要总结。从人民币宽度检测和磁性信号检测两个方面,对模式识别技术在人民币检伪中的具体应用进行讨论。针对货币检测过程中的信号变化,以宽度检测和磁性信号的检测为实例,对信号的采集、信号的处理、真伪的判断开展了研究。相关研究结果可以应用在线性CCD信号的处理和分析之中。为货币的真伪检测方法与判定策略提供了参考实例。 Anti false and false detecting level of paper currency relates with the country's financial security. Its pattern recognition technology in false detecting of RMB, /s to explore how to continuously improve the accurate rate of RMB authenticity, so as to lay the foundation for the development of related equipment. It gives a brief summary of the pattern recognition technology. It discussed the application of the pattern recognition technology in RMB identification from two aspects: the width detection and the mognetic signal detection of RMB. It took the width detection and the magnetic signal detection as examples, studying the ways of signal acquisition and processing,and the judgment of results. Related research results can be used in the signal processing and analysis of CCD. It provides application examples for the detection of currency.
出处 《机械设计与制造》 北大核心 2015年第11期192-196,200,共6页 Machinery Design & Manufacture
关键词 模式识别 人民币检伪 宽度 磁性信号 识别方法 Pattern Recognition RMB Identification Width Magnetic Signal Detecting Method
  • 相关文献

参考文献3

二级参考文献41

  • 1沈兰荪,王爱民,卫保国,王永刚,赵忠旭.图像分析技术在舌诊客观化中的应用[J].电子学报,2001,29(z1):1762-1765. 被引量:61
  • 2哈流柱,付子平,齐成.防伪技术概要[J].中国防伪,2005(1):33-34. 被引量:3
  • 3张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 4Reddick W E,Glass J Q,Cook E N,et al.Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks[J].IEEE Transactions on Medical Imaging,1997,16(6):911-918.
  • 5Tang Yuan Y,Tao Yu,Lam Ernest C M.New method for feature extraction based on fractal behavior[J].Pattern Recognition,2002,55(5):1 071-1 081.
  • 6Chen Li,Yap Kim-Hui.A fuzzy K-nearest-neighbor algorithm to blind image deconvolution[A].IEEE International Conference on Systems, Man and Cybernetics,2003-03:2 049-2 054.
  • 7Karayiannis N B,Pai P I.Fuzzy vector quantization algorithms and their application in image compression[J].IEEE Transactions on Image Processing,1995,4(9):1 193-1 201.
  • 8Han J H,Kim Y K.A fuzzy K-NN algorithm using weights from the variance of membership values[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1999-02:394-399.
  • 9Hanmandlu M,Mohan K R M,Chakraborty S.Fuzzy logic based handwritten character recognition[A].International Conference on Image Processing,2001-03:42-45.
  • 10Kohir V V,Desai U B.Face recognition[A].IEEE International Symposiumon Circuits and Systems,2000-05:305-308.

共引文献47

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部