期刊文献+

Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution 被引量:1

NaOH溶液中Ni基石墨修饰电极上甲醇电氧化过程中钴与铜的协同效应(英文)
下载PDF
导出
摘要 The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry CCA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak currents showed a linear dependency on the square root of the scan rate, which is a characteristic of a diffusion controlled process. During CA studies, the reaction exhibited Cottrellin behavior and the diffusion coefficient of methanol was determined to be 6.25× 10-6 cm2/s and the catalytic rate constant, K, for methanol oxidation was found to be 40×107 cm3/Cmol.s). EIS was used to investigate the catalytic oxidation of methanol on the surface of the modified electrode. 在NaOH溶液(0.1 mol/L)中考察了Ni,Co和Cu二元和三元合金修饰的石墨电极上甲醇电氧化反应性能.采用循环伏安法、计时电流法和电化学阻抗谱(EIS)等技术研究了修饰电极的催化活性和协同效应.这些催化剂在含有Ni,Cu和Co离子溶液的阴极电位上反复浸渍石墨电极制得.结果表明,在甲醇存在下,Ni基三元合金修饰电极(G/NiCuCo)对甲醇氧化反应的响应值明显高于其它样品.阳极峰值电流与扫描速率的平方根呈线性关系,表明该过程受扩散控制.在CA区域,该反应遵循Cottrellin特性,甲醇扩散系数为6.25×10–6 cm2/s.甲醇氧化反应速率常数为40×107 cm3/(mol·s).另外,采用EIS研究了修饰电极表面上甲醇催化氧化反应.
出处 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1867-1874,共8页 催化学报(英文)
基金 provided by K.N.Toosi University of Technology Research Council to conduct this research
关键词 Methanol electro-oxidation Electrocatalysis Synergistic effect Nickel Modified electrode 甲醇电氧化 电催化 协同效应 修饰电极
  • 相关文献

参考文献34

  • 1Ren X M, Zelenay P, Thomas S, Davey J, Gottesfeld S. J Power Sources, 2000, 86: 111.
  • 2Hosseini M G, Momeni M M. Electrochim Acta, 2012, 70: 1.
  • 3Heli H, Jafarian M G, Mahjani M, Gobal F. Electrochim acta, 2004, 49: 4999.
  • 4Scott K, Taama W M, Argyropoulos P. J Power Sources, 1999, 79: 43.
  • 5Kim J, Momma T, Osaka T. J Power Sources, 2009, 189: 999.
  • 6Wang Y, Li L, Hu L, Zhuang L, Lu J T, Xu B Q. Electrochem Commun, 2003, 5: 662.
  • 7Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani M G. J Solid State Electrochem, 2009, 13: 1171.
  • 8Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2008, 33: 4367.
  • 9Danaee I, Jafarian M, Forouzandeh F, Gobal F, Mahjani M G. Int J Hydrogen Energy, 2009, 34: 859.
  • 10Nonaka H, Matsumura Y. J Electroanal Chem, 2002, 520: 101.

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部