期刊文献+

结合连通分量规则度与Adaboost的文本定位算法 被引量:4

New Method Combined with Connected Components' Regulation and Adaboost for Detection of Text
下载PDF
导出
摘要 图像中的文本检测是基于内容的检索的重要组成部分。然而在自然场景中,由于背景的复杂性,文字大小的不确定性,易受光照及污点污染等因素使得检测工作较为困难。在对图像提取最大稳定极值区的基础上,利用同一区域文字的纹理特征一致性来提取文本候选区,然后根据中文文字的笔画结构特点提出新的规则度特征,并结合一般性特征利用Adaboost算法进行对连通分量的分类。通过对最终的连通分量进行基于汉字结构的合并,并根据文本排布的启发式规则实现精确定位。仿真实验表明,新算法取得良好的效果。 Text detection in images is an important step of the content based retrieval. Due to the complexity of the background, the uncertainty of text size and vulnerability to light and stain pollution , the detection gets difficuh for the natural scene. In this paper , candidate regions of text is extracted by using texture consistent features of the same text area on the foundation of maximally stable extremal regions(MSER) , and then a new feature of regulation based on the features of Chinese characters' strokes is proposed to classify the connected components ,by means of Adaboost algorithm combined with other general features.Text can he located precisely according to the merger of conneeted components based on the structure of Chinese characters and the heuristic rules of text arrangement. Simulation shows that the new algorithm performances well for the natural scene images.
作者 方承志 田彪
出处 《电视技术》 北大核心 2015年第21期1-4,14,共5页 Video Engineering
基金 国家自然科学基金项目(61305122)
关键词 最大稳定极值区 汉字结构 规则度 ADABOOST MSERs structure of Chinese characters regulation Adaboost
  • 相关文献

参考文献13

  • 1PHAN T Q,SHIVAKUMARA P ,TAN C I,. A laplacian method for video text detection[ C]//Proc. ICDAR'09 10th Internatiunal Con- ference on Document Analysis and Recot,mition. Barcelona: IEEE Press, 2009 : 66 -70.
  • 2CHEN X , YU1LLE A L. Detecting and reading text in natural scenes [ C ]//Proc. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR 2004 ). [ S. I] : IEEE Press,2004:366-373.
  • 3SU Yuting, JI Zhong, SONG Xingguang, et al. Caption text location with combined features using SVM [ C ]//Proc. l lth IEEE Interna- tiona| Conference on Communication Technology ( ICCT 2008). Han- gzhou : IEEE Press,2008:711-714.
  • 4LUCAS S M. ICDAR 2005 text locating competition results [ C ]// Proc. Eighth International Conference on Document Analysis and Recognition ,2005. [ S. 1] :IEEE Press,2005:80-84.
  • 5EPSHTEIN B, OFEK E, WEXLER Y. Detecting text in natural scenes with stroke width transform[ C]//Proc. 2010 IEEE Confer- ence on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA : IEEE Press ,2010:2963-2970.
  • 6NEUMANN L, MATAS J. Text localization in real-world images u- sing efficiently primed exhaustive search [ C ]//Proc. 2011 Interna- tional Conference on Document Analysis and Recognition(ICDAR). Beijing : IEEE Press ,2011:687--691.
  • 7YIN Xueheng, YIN Xuwang,HUANG Kaizhu et al. Robust text de- tection in nature scene images [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence,2014,36 ( 5 ) :970-983.
  • 8LEE J J, LEE P H, LEE S W,et al. Adaboost for text detection in natural scene [ C l//Proc. 2011 International Conference on Du- ment Analysis and Recognition (ICDAR). Beijing: IEEE Press, 2011,429---434.
  • 9MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[ J ]. Image and Vision Com- puting,200g ,22(10) :761-767.
  • 10SONKA M,HLAVAC V,BOYLE R.图像处理、分析与机器视觉[M].3版.艾海舟,苏延超,等,译.北京:清华大学出版社,2011.

共引文献10

同被引文献12

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部