期刊文献+

复杂信道条件下WSDM的可行性分析及解决方法 被引量:1

Feasibility Analysis and Method for Wireless Statistic Division Multiplexing under Complicated Wireless Channels
下载PDF
导出
摘要 针对无线信道统计复用(WSDM)技术,分析了其在复杂信道条件下的可行性。首先,基于无线信道的时变特性以及信道中存在的噪声,理论分析说明了信道混合矩阵的条件数是影响信号有效分离的关键因素。仿真结果表明,当信道混合矩阵的条件数大于门限值10时,信号分离效果较差,无法实现信道复用。其次,在复杂恶劣的信道环境中,为了实现信道复用,从增设接收天线的角度给出了解决方法,同时,对于如何快速选取一组有效的天线,提出BHC算法进行快速有效选择,从而大大降低了信号分离算法的复杂度,使WSDM技术更加实用。 The feasibility of Wireless Statistic Division Multiplexing (WSDM) method is analyzed when the wireless channel is complicated. Firstly, noise is unavoidable in wireless channels, which also possess time-variant characteristic. Theory analyses prove that the condition number of mixing matrix is the key factor affecting signal' s effective separation. Computer simulations show that channel multiplexing is unachievable when the condition number of mixing matrix exceeds 10. Secondly, in order to achieve channel multiplexing in complicated conditions, the problem by increasing the amount of receiving antennas is solved. Meanwhile, how to select a set of antennas quickly? BHC algorithm to select antennas is proposed, which reduces the complexity of separating algorithm and makes WSDM more practical.
出处 《电视技术》 北大核心 2015年第21期73-76,共4页 Video Engineering
基金 国家自然科学基金项目(61172061)
关键词 无线信道统计复用 条件数 信号分离 WSDM condition number signal separation
  • 相关文献

参考文献8

  • 1STOTAS S, NALLANATHAN A. Enhancing the capacity of spec- trum sharing cognitive radio networks [ J ]. IEEE Trans. Vehicular Technology,2011,60 ( 8 ) : 3768-3779.
  • 2REBEIZ E, YUAN F L, URRIZA P. Energy-efficient processor for blind signal classification in cognitive radio networks [ J ]. IEEE Trans. Circuits and Systems,2014,61 (2) :587-599.
  • 3沈越泓,许魁,陈寿齐,等.统计复用无线通信系统:中国,200910028468.0[P].2009.
  • 4ZHAO W, SHEN Y H, WEI Y M, et al. A novel wireless statistical division multiplexing communication system and performance analy- sis [C]//Proc. WCSP. IS. L ] :Seoul,2014.
  • 5LAHAT D, CARDOSO J F, MESSER H. Second-order multidi- mensional ICA: performance analysis [ J ]. IEEE Trans. Signal Pro- cessing, 2012, 60(9) : 4598--4610 .
  • 6LAHAT D, CARDOSO J F, MESSER H. Blind separation of multi- dimensional components via subspace decomposition: performance a- nalysis [ J ]. IEEE Trans. Signal Processing, 2014, 62 ( 11 ) : 2894-2905.
  • 7FU G S, PHLYPO R, ANDERSON M. Blind source separation by entropy rate minimization [ J]. IEEE Trans. Signal Processing, 2014,62( 16 ) :4245-4255.
  • 8OSTERWISE C, GRANT S L. On over-determined frequency do- main BSS [ J ] tEEE Trans. Audio, Speech, and Language Pro- cessing, 2014,22 ( 5 ) : 954 -964.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部