摘要
针对精细农业网络的信息盲检测问题,在无线传感网络(Wireless Sensor Network,WSN)进行分簇处理的基础上,结合文献中面向精细农业的无线传感网簇内盲检测系统模型,给出了一种改进的量子蚁群优化-互相关算法(QACO-CA)。然后利用提出的QACO-CA算法对精细农业盲检测系统进行实验仿真。仿真表明:与传统蚁群盲均衡算法相比,改进的算法误码率明显降低,且在可接受的误码率范围内能恢复全部簇内传感器节点数据。
In the light of the information blind detection of precision agriculture, based on clustering for processing in the ( Wireless Sensor Network, WSN), and according to the intra-cluster blind detection system model proposed by predecessor in WSN for precision agriculture, a new algorithm named Quantum Ant Colony Optimization-Cross-correlation algorithm(QACO-CA) is proposed for this system model. Then, the blind detection system of the precision agriculture is simulated by using proposed QACO-CA algorithm. Simulation experiments demonstrate that compared with the traditional ant colony algorithm, the improved algorithm significantly lowers bit error ratio and recovers all the intra-cluster sensors'signals in the acceptable scope of bit error ratio.
出处
《电视技术》
北大核心
2015年第21期87-90,103,共5页
Video Engineering
基金
国家自然科学基金项目(61302155)
南京邮电大学人才引进项目(NY212022
NY214052)