期刊文献+

垂直导电衬底的ZnO纳米片的制备及其染料敏化太阳电池的性能

Preparation of Perpendicular ZnO Nanosheets and Their Performance of Dye Sensitized Solar Cell
下载PDF
导出
摘要 介绍了二水乙酸锌/甲醇体系和硝酸锌/尿素体系制备垂直导电衬底的多孔ZnO纳米片、相应染料敏化太阳电池的性能以及制备垂直导电衬底ZnO纳米片体系的发展和现状。硝酸锌/尿素体系更易得到垂直导电衬底的多孔ZnO纳米片,而采用二水乙酸锌/甲醇体系,既可得到垂直导电衬底的多孔ZnO纳米片,也可得到由纳米片组成的多级结构微球。当前,硝酸锌/尿素体系制备的垂直导电衬底的ZnO纳米片的电池最高光电转换效率已达6.06%。 Zinc acetate/methanol and zinc nitrate/urea systems used to prepare perpendicular porous ZnO nanosheets were reviewed. The corresponding photoelectric properties of the dye sensitized solar cells were introduced emphatically. The development and present situation of zinc acetate/methanol and zinc nitrate/urea systems were also studied. Results show that zinc nitrate/urea system is more likely to get the perpendicular porous ZnO nanosheets. As for zinc acetate/methanol system, both perpendicular porous ZnO nanosheets and hierarchical ZnO microspheres consistied of porous ZnO nanosheets can be obtained under different preparation conditions. The photoelectric conversion efficiency of 6.06% was achieved for the DSSC with zinc nitrate/urea system.
机构地区 景德镇陶瓷学院
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第10期2828-2836,2846,共10页 Journal of Synthetic Crystals
基金 国际科技合作专项(2013DFA51000) 国家自然科学基金(51462015) 江西省对外科技合作项目(20122BDH80003) 景德镇陶瓷学院研究生创新基金(JYC201403)
关键词 染料敏化太阳电池 ZnO纳米片 化学浴沉积 光电转换效率 dye sensitized solar cell ZnO nanosheet chemical bath deposition photoelectric conversion efficiency
  • 相关文献

参考文献5

二级参考文献71

  • 1Linsebigler A, Lu G, Yates Jr J. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95:735--758.
  • 2Yang S W, Gao L. Preparation of titanium dioxide nanocrystallite with high photocatalytic activities. J Am Ceram Soc, 2005, 88:968--970.
  • 3O'Regan B,Grattzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353:737--740.
  • 4Cosnier S, Gondran C, Senillou A, et al. Mesoporous TiO2 films: New catalytic electrode fabricating amperometric biosensors based on oxidases. Electroanal, 1997, 9:1387--1392.
  • 5Viticoli M, Curulli A, Cusma A, et al. Third-generation biosensors based on TiO2 nanostructured films. Mat Sci Eng C, 2006, 26: 947-- 951.
  • 6Wagemaker M, Kentgens A, Mulder F. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature, 2002, 418:397--399.
  • 7Wang Z S, Kawauchi H, Kashima T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordin Chem Rev, 2004, 248:1381--1389.
  • 8Hore S, Vetter C, Kern R, et al. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energ Mat Sol C, 2006, 90: 1176--1188.
  • 9Ito S, Zakeeruddin S M, Humphry-Baker R, et al. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater, 2006, 18:1202--1205.
  • 10Tang Z, Wong G, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett, 1998, 72:3270.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部