期刊文献+

颜色特征和超像素特征融合的人体目标再识别 被引量:2

Person Re-identification Based on Color Features and Superpixels Features
下载PDF
导出
摘要 在非重叠视域的多摄像机监控系统中,人体目标再识别有着重要的应用。针对再识别过程中面临的光照变化、视角变化、姿态变化、遮挡等问题,提出了融合全局颜色特征和超像素特征的方法,对颜色特征和超像素特征分配不同的权重,进行人体目标间的相似性度量。超像素特征是将前景图像分割成多个超像素,采用密集采样SIFT特征结合单词包(Bag-of-Words)框架对每个超像素进行描述。将得到的超像素特征和全局颜色特征结合建立人体目标模型,分别使用EMD(Earth Mover’s Distance)距离和巴氏距离度量目标间的相似性。对多个数据库进行实验,结果证明,该算法具有较高的识别率。 Person re-identification is one of the key issues in a non-overlapping multi-camera surveillance system. The method of person re-identification must deal with several challenges such as variations of illumination conditions,poses and occlusions. To seek for more robust features,the unsupervised training method that combining the global color features with the superpixels features was proposed. Specifically,the color feature and the superpixels feature were asssigned different weighted values. To obtain the superpixels feature of a human target,the foreground picture of a person should be divided into different patches using the superpixels segmentation's method. Then,dense SIFT features and Bag-of-Words model were applied to describe superpixels. At last,superpixels features and global color features were combined to represent a person,and EMD( Earth Mover's Distance) distance and Bhattacharyya distance were used to determine the similarity between the targets. Extensive experiments results show that the proposed method has a higher accuracy rate.
作者 宋亚玲 张良
出处 《信号处理》 CSCD 北大核心 2015年第10期1378-1382,共5页 Journal of Signal Processing
基金 国家自然科学基金资助课题(61179045)
关键词 非重叠多摄像机 人体目标再识别 颜色特征 超像素特征 non-overlapping multi-camera person re-identification color features superpixels features
  • 相关文献

参考文献13

  • 1Farenzena M, Bazzani L, Perina A, et al. Person re-i- dentification by symmetry-driven accumulation of local features [ C ]//Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:2360-2367.
  • 2Liu Chunxiao, Gong Shaogang, Loy Change Chen, et al. Person re-identification: what features are important? [ C ] // European Conference on Computer Vision. Heidelberg: Springer-Verlag Berlin, 2012 : 391-401.
  • 3Weinberger K Q, John B, Saul L K. Distance metric learning for large margin nearest neighbor classification [J].Journal of Machine Learning Research, 2009, 10 : 207 -244.
  • 4Zheng Weishi, Gong Shaogang, Tao Xiang. Re-identifi- cation by relative distance comparison [ J ]. IEEE Trans- actions on Pattern Analysis and Machine InteUigenee, 2013, 35(3) :653-668.
  • 5Jojic N, Perina A, Cristani M, et al. Stel component a- nalysis: Modeling spatial correlations in image class structure [ C ]//Computer Vision and Pattern Recognition. Miami, FL: IEEE Conference, 2009:2044-2051.
  • 6K. E. A. van de Sande, Gevers T, Cees G. M. Snoek. E- valuating color descriptors for object and scene recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (9) : 1582-1596.
  • 7王春瑶,陈俊周,李炜.超像素分割算法研究综述[J].计算机应用研究,2014,31(1):6-12. 被引量:116
  • 8Achata R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of art superpixel methods [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence. 2012, 34(11) :2274-2282.
  • 9李丽丽,孙劲光.SIFT特征区域Contourlet域遥感图像水印算法[J].信号处理,2012,28(9):1254-1261. 被引量:6
  • 10杜宇宁,艾海舟.基于统计推断的行人再识别算法[J].电子与信息学报,2014,36(7):1612-1618. 被引量:15

二级参考文献67

  • 1王贤敏,关泽群,吴沉寒.小波用于基于遥感影像特征的自适应二维盲水印算法[J].计算机工程与应用,2004,40(20):37-41. 被引量:11
  • 2王向阳,杨红颖,邬俊.基于内容的离散余弦变换域自适应遥感图像数字水印算法[J].测绘学报,2005,34(4):324-330. 被引量:32
  • 3张力,钱恭斌,肖薇薇.基于Tchebichef矩的几何攻击不变性第二代水印算法(英文)[J].软件学报,2007,18(9):2283-2294. 被引量:11
  • 4M. Bami, I. J. Cox, T. Kalker. Digital watermarking [ J ]. In: Lecture Notes in Computer Science (LNCS), USA ( New York) : Springer-Verlag,2005 : 15-17.
  • 5Lee S, Choi H, Choi K, Kim J. Fingerprint-quality index using gradient components[ J]. IEEE Transactions on In- formation Forensics and Security ,2008,3 (4) :791-799.
  • 6P. Dang, N. P. Galatsanos, AffineTransformation Resist- ant Watermarking Based on Image Normalization [ J ]. IEEE Trans. on image processing,Vol. 8,2002:865-882.
  • 7REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 8FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 9SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 10SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.

共引文献134

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部