期刊文献+

使用闪光灯图像对的闪光灯阴影检测 被引量:1

Flash Shadow Detection Using Flash Image Pairs
下载PDF
导出
摘要 人们在光线较暗的环境拍摄照片时,经常使用闪光灯来增强光照。但闪光灯的使用会引起一些不良效应,如红眼和闪光灯阴影。检测并去除闪光灯图像中的闪光灯阴影区域,会显著提高对象检测和识别等视觉任务的性能。提出了一种使用闪光灯图像对的闪光灯阴影检测算法。它基于以下假设:闪光灯阴影边缘点只会出现在闪光灯图像中,并且闪光灯阴影区域的灰度值低于非闪光灯图像对应区域的灰度值。所提算法包括三个步骤:预处理、闪光灯阴影边缘点检测和闪光灯阴影检测。仿真结果和与已有方法的比较都验证了所提方法的有效性。 When photographers taking pictures in low-light environments,they normally use flash light to enhance the illuminate. However,the use of flash may introduce unwanted artifacts,such as red-eyes and flash shadows. Detection and removal flash shadows from flash images can significantly improve the performance of several vision tasks such as object detection and recognition. A practical algorithm is proposed to detection flash shadows by using flash image pairs. The key hypothesis is that flash shadow edges appear only in flash images and the intensity values of flash shadow regions are much lower than corresponding regions in no-flash images. The developed algorithm consists of a three-tier process including preprocessing,flash shadow edge detection,and flash shadow detection. Experimental results demonstrate the effectiveness of the presented method as compared to previous methods.
出处 《信号处理》 CSCD 北大核心 2015年第11期1425-1431,共7页 Journal of Signal Processing
基金 国家自然科学基金(61002030 61472274)
关键词 阴影检测 闪光灯图像对 闪光灯阴影 shadow detection flash image pairs flash shadow
  • 相关文献

参考文献16

  • 1Tian J, Sun J, Tang Y, Tricolor attenuation model for shado~ detection[ J]. IEEE Transac.tion on Image Pro- cessing, 2009, 18(10) :2355-2363.
  • 2袁博,阮秋琦,安高云.改进的自适应灰度视频序列阴影检测方法[J].信号处理,2014,30(11):1370-1374. 被引量:5
  • 3史洪印,侯志涛,郭秀花,李景文.基于阴影检测的单幅高分辨SAR图像动目标检测方法[J].信号处理,2012,28(12):1706-1713. 被引量:11
  • 4Matsushita Y, Nishino K, Ikeuchi K, et al. Illumination normalization with time-dependent intrinsic images for vid- eo surveillance[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10) :1336-1347.
  • 5Wu T P, Tang C K. A Bayesian approach for shadow ex- traction from a single image [ C ]//Internal Conference in Computer Vision Proceedings, Beijing, China, Oct. 17- 20, 2005: 480-487.
  • 6Finlayson G D, Hordley S D, Drew M S. Removing shadows from images[ C ]//European Conference on Com- puter Vision, Copenhagen, Denmark, May 28-31 , 2002: 823- 836.
  • 7Finlayson G D, Hordley S D, Lu C, et al. On the remov- al of shadows from images[ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2006, 28 ( 1 : 59-68.
  • 8Tappen M F, Freeman W T, Adelson H. Recovering in- trinsic images fi'um a single image[ J 1- IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (9) : 1459-1472.
  • 9Zhu J, Samuel K G, Masood S, et al. Learning to recog- nize shadows in monochromatic natural images [ C ] // IEEE Conference on Computer Vision and Pattern Recog-nition, San Francisco, CA, June 13-18,2010- 223-230.
  • 10Wu Q, Zhang W, Kumar B V K V. Strong shadow re- moval via patch-based shadow edge detection[ C I//IEEE International Conference on Robotics and Automation, Saint Paul, MN, May 14-18, 2012: 2177-2182.

二级参考文献57

共引文献13

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部