期刊文献+

基于WMRMR的滚动轴承混合域特征选择方法 被引量:8

Fault diagnosis of rolling bearings in mixed domain based on WMRMR
下载PDF
导出
摘要 为充分利用时域、频域以及时频域中的有效特征,提高滚动轴承故障诊断准确率,提出一种混合域特征集构建方法,利用原始信号分别生成时域和频域特征集,通过经验模式分解提取固有模态函数的排列熵和Hilbert谱的奇异值作为时频域特征集,使得混合域特征集比单域特征更能全面准确反映轴承运行状态。针对混合域特征集存在维数过高、特征之间冗余性严重的问题,采用加权最大相关最小冗余的特征选择方法,以支持向量机分类正确率为依据,选取7个有效特征向量。实验结果表明:基于WMRMR的混合域特征选择方法的分类准确率可达98%,能够有效的识别轴承故障信息。 In order to improve the accuracy of rolling bearings fault diagnosis by making full use of effective features in time domain,frequency domain and time-frequency domain, a mixed domain feature construction approach was proposed. With it,time domain and frequency domain features were generated using the original signals,permutation entropies of intrinsic mode functions obtained with EMD and singular values of Hilbert spectrum were extracted as timefrequency domain feature sets,and mixed domain feature sets were made to more fully and accurately reflect bearing running states than the single domain features do. Aiming at mixed domain feature sets having shortcomings of too high dimensions and serious redundancy,a feature selection method based on weighted minimal redundancy maximal relevance( WMRMR) was proposed,it could select seven major feature vectors based on the classification accuracy of support vector machine. The test results showed that the classification accuracy of mixed domain feature selection can reach 98%based on WMRMR,and it can effectively identify the bearing fault information.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第19期57-61,共5页 Journal of Vibration and Shock
基金 总装备部武器装备预研基金(9140A27020212JB14311)
关键词 混合域 经验模式分解 Hilbert谱奇异值 排列熵 加权最大相关最小冗余 mixed domain empirical mode decomposition(EMD) singular values of Hilbert spectrum permutation entropy weighted minimal redundancy maximal relevance(WMRMR)
  • 相关文献

参考文献12

  • 1Randall R B, Antoni J. Rolling element bearing diagnostics A tutorial [ J ]. Mechanical Systems and Signal Processing, 2011, 25(2) : 485 -520.
  • 2罗荣,田福庆,李克玉,丁庆喜.卷积型小波变换实现及机械早期故障诊断应用[J].振动与冲击,2013,32(7):64-69. 被引量:6
  • 3张超,陈建军,郭迅.基于EMD能量熵和支持向量机的齿轮故障诊断方法[J].振动与冲击,2010,29(10):216-220. 被引量:127
  • 4The Case Western Reserve University Bearing Data Center Website [ DB/OL]. http ://csegroups. case. edu/bearingdata- center/pages/download-data-file.
  • 5Sassi S, Badri B, Thomas M. TALAF and THIKAT as inno-vative time domain indicators for tracking ball bearings[ C ]// Proceedings of the 14th Seminar on Machinery Vibration, Vancouver, IEEE, 2006 : 24 - 27.
  • 6I-Iuang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and En- gineering Sciences, 1998,454 ( 1971 ) : 903 - 995.
  • 7赵志宏,杨绍普,李韶华.基于Hilbert谱奇异值的轴承故障诊断[J].中国机械工程,2013,24(3):346-350. 被引量:15
  • 8饶国强,冯辅周,司爱威,谢金良.排列熵算法参数的优化确定方法研究[J].振动与冲击,2014,33(1):188-193. 被引量:39
  • 9Bandt C, Pompe B. Permutation entropy: a natural complexi- ty measure for time series [ J ]. Physical Review Letters, 2002, 88 (17) : 1 - 4.
  • 10Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data [ J ]. Journal of Bioinformat- ics and Computational Biology, 2005, 3(2): 185 -205.

二级参考文献77

共引文献253

同被引文献78

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部