期刊文献+

多股簧系统动态响应等效线性化分析

Equivalent linearization analysis of the dynamic response of systems with stranded wire helical springs
下载PDF
导出
摘要 分析归一化Bouc-Wen模型描述的滞迟阻尼能量损耗,建立该模型极限环在任意变形幅值下能量损耗计算公式及快速计算方法,提出多股簧系统频率响应特性的等效线性化分析方法并用数值仿真进行验证。结果表明,等效线性化分析与数值仿真结果一致,且计算速度远高于数值仿真。该方法可显著提高多股簧系统设计效率,对工程中大量具有近似线性系统响应特性的多股簧系统设计有实际意义。 The energy dissipation of hysteretic damping described by the normalized Bouc-Wen model was studied.An equation for calculating the energy dissipation under arbitrary deformation amplitude was established and a fast evaluation approach was provided as well. On this basis,an equivalent linearization analysis method for the dynamic response of systems with stranded wire helical springs was proposed. Numerical simulations were carried out to verify the proposed method. The results obtained by the proposed method coincide well with those obtained by the numerical method while the proposed method is much more efficient than the numerical method. The equivalent linearization method is able to improve the efficiency of the designing of systems with stranded wire helical springs significantly; therefore,it is of practical value for the designing of many practical systems with approximate linear response characteristics.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第20期51-56,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51375508,51375517) 教育部创新团队计划(IRT1196) 重庆高校创新团队项目(KJTD201313)
关键词 多股簧 BOUC-WEN模型 能量损耗 等效线性化 stranded wire helical spring Bouc-Wen model energy dissipation equivalent linearization
  • 相关文献

参考文献15

  • 1王时龙,雷松,周杰,李川,杨勇,萧红.两端并圈多股弹簧的冲击响应研究[J].振动与冲击,2011,30(3):64-68. 被引量:12
  • 2Zhao Y, Wang S L,Zhou J, et al. Modeling and identification of the dynamic behavior of stranded wire helical springs [ J ]. Journal of ~ibroengineering,2013, 15 ( 1 ) : 326 - 339.
  • 3Peng Y X, Wang S L, Zhou J, et al. Structural design, numerical simulation and control system of a machine tool for stranded wire helical springs [ J ]. Journal of Manufacturing Systems, 2012, 31(1SI) : 34-41.
  • 4王时龙,张明明,周杰,赵昱,李小勇,田波.振动状态下螺旋弹簧运动状态模型[J].机械工程学报,2012,48(1):78-83. 被引量:8
  • 5Bouc R. Forced vibration of mechanical systems with hysteresis [ C ]// Djadkov S. Proceedings of the 4th Conference on Nonlinear Oscillations. Prague: Academia, 1967 : 315.
  • 6Wen Y K. Method for random vibration of hysteretic systems[J].Journal of the Engineering Mechanics Division, 1976, 102(2) : 249 -263.
  • 7相恒波,方秦,王玮,龚自明.磁流变阻尼器抗爆隔震性能的数值模拟[J].振动与冲击,2007,26(11):106-111. 被引量:4
  • 8Ni Y Q, Ko J M, Wong C W, et at. lvloue,nng a~u identification of a wire-cable vibration isolator via a cyclic loading test part 1 : experiments and model development [ J ]. Proceedings of the Institution of Mechanical Engineers Part I- Journal of Systems and Control Engineering,1999, 213 (I3) : 163 - 171.
  • 9Okuizumi N, Kimura K. Multiple time scale analysis of hysteretic systems subjected to harmonic excitation [ J ]. Journal of Sound and Vibration,2004, 272(3) : 675 -701.
  • 10Wong C W, Ni Y Q, Lau S hysteretic differential model 1. L. Steady-state oscillation of response analysis [ J ]. Journal of Engineering Mechanics-Asce, 1994, 120 ( 11 ) : 2271 - 2298.

二级参考文献34

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部