期刊文献+

交流电场气动效应对球形传播火焰影响的数值研究 被引量:2

Numerical Simulation for AC Electric Field Aerodynamic Effect on Spherically Expanding Flame
下载PDF
导出
摘要 为了验证电场对球形传播火焰的影响机理,通过采用给球形传播火焰锋面组分添加交变动量源项的方法,模拟了交流电场作用下火焰锋面受力产生的气动效应,以预测电场对球形传播火焰影响的机理。在N-S方程中通过为火焰锋面添加以流动时间t函数形式的水平方向动量源项并采用Fluent软件,来模拟交流电场对甲烷-空气球形传播火焰的拉伸影响,模拟时过量空气系数为1.6,体积力有效值恒为30 750N/cm^3,交变频率分别为10Hz、100Hz和1 000Hz。模拟结果表明:在交流电场下,低频时电场对火焰的拉伸作用较为明显,在此阶段气动效应是电场对火焰形变产生影响的主要因素;高频时没有发现火焰出现明显的拉伸现象,可以推断此时气动效应不是电场对火焰影响的主要因素;气动效应的界定频率的数量级可以通过数值模拟来估计,约在10^2~10^3 Hz左右。 To verify the mechanism of electric field acting on spherically expanding flame, by adding alternating momentum source items to flame surface, the aerodynamic effect under an AC electric field is simulated to predict the mechanism that electric field affects spherically expanding flame. CFD software Fluent is used to simulate the stretch effect resulting from AC electric field acting on methane/air premixed flame. A horizontal momentum source term consisting of flowing time is added into N-S equation, and excess air coefficient is taken as 1.6, volume force as 30 750 N/cm^3, and AC frequency as 10 Hz, 100 Hz and 1 000 Hz, respectively. The results show that for low frequency AC field, stretch effect on the flame is more obvious, aerodynamic effect gets the primary reason of flame deformation in this stages for high frequency AC field, stretch effect on flame surface has not been found. Thus the magnitude of effective frequency is estimated within 10^2-10^3 Hz.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第11期20-25,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51176150 51476126) 清华大学汽车安全与节能国家重点实验室开放基金资助项目(KF14122)
关键词 电场 火焰拉伸 气动效应 数值模拟 electric field flame stretch aerodynamic effect numerical simulation
  • 相关文献

参考文献14

  • 1CALCOTE H F, PEASE R N. Electrical properties of flames: burner flames in longitudinal electric fields[J].Industrial and Engineering Chemistry, 1951, 43 (12): 2726-2731.
  • 2HU Jing, RIVIN B, SHER E. The effect of an electric field on the shape of co-flowing and candle-type methane-air flames[J].Experimental Thermal and Fluid Science, 2000, 21(1/2/3): 124-133.
  • 3SAITO M, SATO M, SAWADA K. Variation of flame shape and soot emission by applying electric field[J].Journal of Electrostatics, 1997, 39(4): 305-311.
  • 4VOLKOV E N, SEPMAN A V, KORNILOV V N, et al. Towards the mechanism of DC electric field effect on flat premixed flames[C]∥Proceedings of the European Combustion Meeting. Pittsburgh, PA, USA: Combustion Institute, 2009: 242385613.
  • 5BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J].Combustion and Flame, 2010, 157(12): 2286-2297.
  • 6WISMAN D L, MARCUM S D, GANGULY B N. Electrical control of the thermodiffusive instability in premixed propane-air flames[J].Combustion and Flame, 2007, 151(4): 639-648.
  • 7CHA M S, LEE Y Y. Premixed combustion under electric field in a constant volume chamber[J/OL].IEEE Transactions on Plasma Science, 2012.[2014-12-01].http: ∥dxdoiorg/101109/tps201222061 20.
  • 8MENG Xiangwen, WU Xiaomin, KANG Chan, et al. Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of premixed CH4/O2/N2 flames[J].Energy & Fuels, 2012, 26(11): 6612-6620.
  • 9康婵,杨星,刘杰,孟祥文,房建峰,吴筱敏.负电场下点电极和网状电极对预混稀燃火焰的影响[J].西安交通大学学报,2014,48(1):31-36. 被引量:9
  • 10VAN WON S H, CHA M S, PARK C S, et al. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets[J].Proceedings of the Combustion Institute, 2007, 31(1): 963-970.

二级参考文献14

  • 1JAGGERS H C,ENGEL A V. The effect of electric fields on the burning velocity of various flames[J].{H}Combustion and Flame,1971,(3):275-285.
  • 2WONS H,CHA M S,PARK C S. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets[J].{H}PROCEEDINGS OF THE COMBUSTION INSTITUTE,2007,(1):963-970.
  • 3WON S H,RYU S K,KIM M K. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets[J].{H}Combustion and Flame,2008,(4):496-506.doi:10.1016/j.combustflame.2007.11.008.
  • 4ALTENDORFNER F,KUHL J,ZIGAN L. Study of the influence of electric fields on flames using planar LIF and PIV techniques[J].{H}PROCEEDINGS OF THE COMBUSTION INSTITUTE,2011,(2):3195-3201.
  • 5CALCOTE H F,PEASE R N. Electrical properties of flames-burner flames in longitudinal electric fields[J].{H}Industrial and Engineering Chemistry,1951,(12):2726-2731.
  • 6MEMDOUH B,PASCAL D,PIERRE V. Direct numerical simulation of the effect of an electric field on flame stability[J].{H}Combustion and Flame,2010,(12):2286-2297.
  • 7MASAHIRO S,MASAYUKI S,SAWADA K. Variation of flame shape and soot emission by applying electric field[J].{H}Journal of Electrostatics,1997,(4):305-311.
  • 8XIE L,KISHI T,KONO M. Investigation on the effect of electric fields on soot formation and flame structure of diffusion flames[J].International Symposium on Combustion,1992,(1):1059-1066.
  • 9MIN S C,LEE Y. Premixed combustion under electric field in a constant volume chamber[J].{H}IEEE Transactions on Plasma Science,2012,(12):3131-3138.
  • 10MORIYA S,YOSHiDA K,SHOJI H. The effect of uniform and non-uniform electric fields on flame propagation[J].Journal of Thermal Science and Technology,2008,(2):254-265.

共引文献8

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部