期刊文献+

具有垂直传染及脉冲免疫接种的时滞SEIR传染病模型 被引量:2

A delayed SEIR epidemic model with vertical transmission and impulsive vaccination
下载PDF
导出
摘要 研究一类具有垂直传染及脉冲免疫接种的时滞SEIR传染病模型,讨论了模型的无病周期解的全局吸引性,同时得到了带有时滞的持久性的充分条件. A delayed SEIR epidemic model with vertical transmission and impulsive vaccination is studied. The global attractivity of the disease-free periodic solution in the model is discussed, and the sufficient condi-tion of the permanence for the system with delay is given.
出处 《渤海大学学报(自然科学版)》 CAS 2015年第3期193-199,203,共8页 Journal of Bohai University:Natural Science Edition
基金 辽宁省自然科学基金项目(No:LN2014160) 辽宁省教育厅项目(No:L2012404)
关键词 时滞 脉冲免疫接种 垂直传染 全局吸引性 持久性 time delay impulsive vaccination vertical transmission global attractivity permanence
  • 相关文献

参考文献13

二级参考文献75

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 2孟晓伟,张勇,王建中.具有脉冲接种流行病模型的周期解稳定性[J].华北工学院学报,2005,26(4):239-242. 被引量:3
  • 3李建全,马知恩.两类带有确定潜伏期的SEIS传染病模型的分析[J].系统科学与数学,2006,26(2):228-236. 被引量:12
  • 4周艳丽,王贺桥,王美娟,徐长永.具有脉冲预防接种的SIQR流行病数学模型[J].上海理工大学学报,2007,29(1):11-16. 被引量:10
  • 5Alberto d'Onofrio. On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Applied Mathematics Letters, 2005, 18: 729-732.
  • 6Alberto d'Onofrio. Vaccination policies and nonlinear force of infection: Generalization of an observation by alexander and moghadas. Applied Mathematics and Computation, 2005, 168:613 -622.
  • 7Lu Zhonghua, Chi Xuebin and Chen Lansun. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission. Mathematical and Computer Modelling, 2002, 36: 1039-1057.
  • 8Alberto d'Onofrio. Pulse vaccination strategy in the SIR epidemic model: Global asymptotic stable eradication in presence of vaccine failures. Mathematical and Computer Modelling, 2002, 36: 473-489.
  • 9Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Sin-gapore: World Scientific, 1989.
  • 10D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179(1): 57-72.

共引文献82

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部