期刊文献+

基于贝叶斯方法的高鲁棒性故障检测技术 被引量:1

Research on high robust fault detection based on Bayesian method
下载PDF
导出
摘要 故障检测在控制工程领域具有广泛的应用,而鲁棒性是衡量系统在故障检测时的不确定性的重要指标.为了提高鲁棒系统故障检测的能力,基于贝叶斯的基本原理对系统的故障和不确定性进行研究,提出一种基于贝叶斯方法的高鲁棒性故障检测方法.首先,对非线性系统的故障检测问题进行定义,分析参数空间的不确定性问题.其次,基于贝叶斯基本原理对参数空间的推导进行分析.最后,通过分析系统正常运行的参数空间与发生故障时的参数空间之间的成员关系来进行故障检测.实验表明,在四罐耦合系统中,提出的基于贝叶斯方法的故障检测技术在系统模型参数具有不确定性的条件下可以很好地进行故障识别. Fault detection was applied extendly in control engineering field,and robustness is animportant measure of uncertain for a system while detecting faults. In order to improve the performance of faultdetection in robust systems,we studied the problem system's fault and uncertain based on Bayesian principle,and proposed a Bayesian based robust fault detection method. Firstly,we defined the problem of faultdetection for nonlinear systems,and analyzed their uncertainty of parameter space. Secondly,we analyzed howto infer the parameter space based on Bayesian principle. Finally,while detecting faults of a system,weanalyzed the set membership between normal parameter space and faulty parameter space. The experimentsshowed that,in a quadruple-tank process,the proposed method could detect faults efficiently in a system withuncertain model parameters.
出处 《湖北大学学报(自然科学版)》 CAS 2015年第6期565-569,共5页 Journal of Hubei University:Natural Science
基金 江苏省基础研究计划项目(自然科学基金)(BK2012129) 湖北省国际交流与合作项目(2012IHA0140)资助
关键词 故障检测 鲁棒性 贝叶斯 集合成员关系 fault detection robustness Bayesian set-membership
  • 相关文献

参考文献14

  • 1缪志强,王耀南.基于径向小波神经网络的混沌系统鲁棒自适应反演控制[J].物理学报,2012,61(3):64-70. 被引量:5
  • 2冯旭,孙优贤.鲁棒辨识问题评述[J].控制理论与应用,1993,10(6):609-616. 被引量:9
  • 3Chen J,Patton R.Robust model-based fault diagnosis for dynamic systems[J].Kluwer Academic Publishers,2009,21(1):110-118.
  • 4Reinelt W,Garulli A,Ljung L.Comparing different approaches to model error modelling in robust identification[J].Automatica,2012,38(11):452-456.
  • 5Milanese M,Taragna M.HocHset membership identification:a survey[J].Automatica,2005,41(12):2019-2032.
  • 6Garulli A,Reinelt W.On model error modelling in set membership identification[M].NewYork:Proc of the SYSlD,2000.
  • 7Goodwin G,Braslavsky J,Seron M.Non-stationary stochastic embedding for transfer function estimation[J].Automatica,2012,38(3),47-62.
  • 8Lagoa C,Li X,Sznaier M,Probabilistically constrained linear programs and risk-adjusted controller design[J].SIAM J Optim,2005,15(3):938-951.
  • 9Jaulin L.Probabilistic set-membership approach for robust regression[J]Journal of Statistical Theory and Practice,2010,4(1):235-244.
  • 10宋功益,王晓茹,周曙.基于贝叶斯网的电网多区域复杂故障诊断研究[J].电力系统保护与控制,2011,39(7):20-25. 被引量:36

二级参考文献30

共引文献52

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部