期刊文献+

从法国公共电力企业的视角看大数据带来的挑战和机遇 被引量:13

Big Data Challenges and Opportunities for a Utility as EDF
下载PDF
导出
摘要 大数据、数据分析、数据科学,以及与数据相关的创新技术正广泛应用在各领域企业的技术研发和商业模式中。其中,基于大数据的应用和决策制定是能源企业的核心发展方向,大数据和数据分析也是智能电网的核心内容之一。广泛地说,数据及其相关应用是技术创新和附加价值的载体,对企业的战略发展以及创新产品和服务的开发至关重要。因此,大量数据的产生和新一代信息系统的开发为国际能源大舞台的参与者们提供了新的可能性和商机。文章首先概述大数据的相关背景,然后介绍法国电力集团研究院在大数据领域的相关研究工作,最后对下一步的研究工作进行了展望。 Big data, data analytics and data science are buzz words and lots of such projects are launched everywhere over the world including traditional companies, challenging their approaches and business models. Energy sector is undergoing a revolution leading utilities to data driven culture and transformation. Data analytics is becoming heart of smart grid projects and key factor for success. More generally, energy data analytics bring innovation and value, impacting utilities' internal processes and helping them to build innovative and valuable services for their customers. Smart devices and industrial internet produce more and more data that big data technologies and tools allow to analyze, offering huge opportunities for utilities and actors of energy sector. In this paper some pieces of background context are given, and a few experiments achieved within RD Division of EDF presented. Finally, some perspectives and further work are outlooked.
出处 《电网技术》 EI CSCD 北大核心 2015年第11期3109-3113,共5页 Power System Technology
关键词 大数据 数据分析 公共事业公司 智能电网 big data data analytics utilities smart grid
  • 相关文献

参考文献8

  • 1Roberta Bigliani, Gaia Gallotti, Giacomo Laurini, et al. IDC energy insights Western European utilities annual survey methodology 2013[R]. IDC Corportate USA, 2013.
  • 2IBM Big Data & Analytics Hub. The four V's of big data [EB/OL]. [2015]. http://www.ibmbigdatahub.com/infographic/four-vs- big-data.
  • 3Leeley D. P. dos Santos, Alzennyr G. da Silva, Bruno Jacquin, et al. Massivv smart meter data storage and processing on top of Hadoop[C]//Workshop Big Data 2012, 38^th International Conference on VLDB (Vcwy Large Data Bases). Istanbul: METU, Turkey, 2012: 24-30.
  • 4Alice Berard, Georges Hebrail. Proceedings of the 2nd Intemational Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications [C]//BigMine Workshop(KDD2013), Chicago: University of Illinois at ChicagoACM, 2013: 15-22.
  • 5Remy Saissy, Marie-Luee Picard, Charles Bernard, et al. Real-time energy data-analytics with Storm[C]//Hadoop Summit 2014. Califomie: Hortonworks, 2014.
  • 6Pompey P, Bondu A, Goude Y, et al. GAM model based large scale electrical load simulation for smart grids[J]. Lecture Notes in Statistics Modeling and Stochastic Learning for Forecasting in High Dimension, 2014,.
  • 7Wood S N, Goude Y, Shaw S, Generalized additive models for large datasets[J]. Journal of Royal Statistical Society-C, 2014.
  • 8Leeley D. P. dos Santos, Alzennyr G. da Silva, Bruno Jacquin, et al. Adaptive learning of smoothing functions: application to electricity load forecasting[J]. Advances in Neural Information Processing Systems, 2012, 25: 2519-2527.

同被引文献163

引证文献13

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部