期刊文献+

学习系统中基于用户行为分析的推荐算法研究 被引量:2

Research of recommendation algorithm based on analysis of user behavior in learning system
下载PDF
导出
摘要 对推荐算法进行综述和分析,针对目前推荐方法的用户兴趣不明显,针对性较差等问题,提出一种基于访问时间、资源种类和心情留言的推荐算法。其中,心情留言用于衡量用户喜爱资源的程度,将该算法命名为TTM(Time-Types-Mood message)算法,并提出基于访问时间、资源种类和心情留言的三种数据权重函数。该算法在学习系统中用于对用户行为进行分析。实验证明,这种TTM算法能够做出合理的推荐,推荐质量得到了提高。 For the user interest is not obvious, targeted poor and other issues in the current recommendation methods, this article reviews and analyzes the recommendation algorithms, and a recommendation algorithm based on the access time, resource type and mood message is proposed. Among them, the mood message is used to measure the extent of the user's favorite resources. The algorithm is named TTM (Time-Types-Mood message) algorithm, and three data weighting functions is proposed based on the access time, resource type and mood message. The algorithm is applied to the learning system to analyze user behavior, and make verification to itself. The experimental results show that TTM algorithm can make a reasonable recommendation; the recommendation quality has been improved.
作者 王宁 胡庆春
出处 《计算机时代》 2015年第11期4-7,共4页 Computer Era
关键词 用户行为分析 推荐算法 学习系统 数据权重 数据挖掘 user behavior analysis recommendation algorithm learning system data weight data mining
  • 相关文献

参考文献9

  • 1Candillier L, Meyer F, Boull e M.Comparing State-of- the-art Collaborative Filtering Systems[C]//Proc.of Conference on Machine Learning and Data Mining in Pattern Recognition. Berlin Germany: Springer,2007: 548-562.
  • 2Pazzani M. A framework for collaborative, content-based, and demographic filtering. Artificial Intelligence Review, 1999,13(5-6):393-408.
  • 3胡勋,孟祥武,张玉洁,史艳翠.一种融合项目特征和移动用户信任关系的推荐算法[J].软件学报,2014,25(8):1817-1830. 被引量:49
  • 4韦素云,业宁,杨旭兵.结合项目类别和动态时间加权的协同过滤算法[J].计算机工程,2014,40(6):206-210. 被引量:10
  • 5Jing Zhang, Qinke Peng, Shiquan Sun, Che Liu. Collaborative filtering recommendation algorithm based on user preference derived from item domain features [J].Physica A: Statistical Mechanics and its Applications, 2014.396(2):66-76.
  • 6Guibing Guo, Jie Zhang, Daniel Thalmann.Merging trust in collaborative filtering to alleviate data sparsity and cold start[J].Knowledge-Based Systems,2014.57(2):57-68.
  • 7Feng Xie, Zhen Chen, Jiaxing Shang, Geoffrey C. Fox. Grey Forecast model for accurate recommendation in presence of data sparsity and correlation[J].Knowledge- Based Systems,2014.69(10): 179-190.
  • 8邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 9王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20. 被引量:179

二级参考文献54

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 3J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166
  • 4Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196
  • 5J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87
  • 6高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003
  • 7Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80
  • 8G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749
  • 9Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129
  • 10G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254

共引文献375

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部