摘要
采用条件随机场(CRFs)算法,以商品属性为中心,挖掘出消费者对商品的情感观点以及观点态度的强弱。通过对商品评论进行标注学习,实现了商品属性和相应的评价词的自动抽取,从而识别出评论文本中的关键信息。研究中抽取的三个维度的关键信息包括商品特征属性,与之相关的评论情感观点,以及情感程度的强弱。仿真实验表明,借助词本身和词性特征,以及上下词的位置关系特征,CRFs算法对商品评论信息抽取有着较高的查准率和召回率。
Focusing on commodity attributes, this paper adopts conditional random fields (CRFs) method to mine the consumerst emotional point of view and the attitude strength toward products. Through the learning of manual tags on product reviews, the automatic extraction of commodity attributes and corre- sponding assessments was realized. On this account, the key information in product reviews was identified. The three dimensions of key information in this study include attributes of goods, and related comments emotional point of view, and the degree of strength of emotion. Simulation results show that, with the help of the word itself and part of speech features, as well as the characteristic of the relationship between the location of the word, CRFs method has a higher precision and recall rate of information extraction on product reviews.
出处
《湖北工业大学学报》
2015年第5期77-81,共5页
Journal of Hubei University of Technology
基金
国家自然科学基金项目(71303075)
中国博士后科学基金项目(2012M511697)
湖北省自然科学基金项目(2011CDB080)
关键词
条件随机场
信息抽取
商品评论
隐马尔科夫模型
conditional random fields
information extraction
product reviews
hidden markov model