期刊文献+

基于微分流形的图像复原方法 被引量:3

A differentiable manifold regularization based restoration model
下载PDF
导出
摘要 正则化是图像复原领域为获取理想复原结果,将图像复原的优化模型与约束条件整合为统一的优化目标的重要手段.针对传统正则化复原模型中仅基于单一先验的假设的不足,提出了流形正则化的方法,将图像空间看作一个"弯曲"的图像流形,通过修正绝对高斯曲率和对图像中的不同特征进行标识和分类,然后针对不同特征区域采用不同的先验形式进行正则约束,并针对多种正则化约束的模型设计了基于E-M算法的交叉迭代图像复原方法.实验验证了该方法在去噪和去模糊方面取得了比经典全局单一范数约束方法更好的信噪比. The regularization method used in image restoration area is an effective means for obtaining the restored image with higher quality. This paper improves the traditional single prior assumptions for the regularization term with a novel prior assumption which we call manifold regularization. According to the idea of manifold regularization,all images lie on the "bending"manifold. By the modified absolute value of Gaussian curvature,the feature of images can be identified. And images can be classified into different classes. Based on the classification,the model can decide the form of the regularization term by using the different prior assumptions. Furthermore,this operation can be taken on different regions of an image.For the proposed restoration model with several kinds of regularization term,a cross iterative algorithm based on E-M method is designed for the experiments. By some tests,it is verified that the manifold regularization based restoration model achieves the desired results.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2015年第5期1-8,共8页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(61273364 61272354 61300176 61473031 61472029) 北京市自然科学基金资助项目(4152042) 中央高校基本科研业务费专项资金资助(2013JBM019)
关键词 图像复原 正则化 流形 高斯曲率 交叉迭代 image restoration regularization manifold Gaussian curvature cross iterative
  • 相关文献

参考文献15

  • 1Mario B,Patrizia B.Introduction to inverse problems in imaging[M].Bristol:Institute of Physics Pub,1998.
  • 2Mesarovic V Z,Galatsanos N P,Katsaggelos A K.Regular- ized constrained total least-squares image restoration[J] IEEE Trans on Image Processing,1995,4(8):1096-1108.
  • 3Ivanov V K.On linear problems that are not well-posed[J].Soviet Math Doki,1962,3:981-983.
  • 4Phillis D L.A technique for the numerical solution of cer- tain integral equations of the first kind[J].Journal of the ACM,1962,9(1):84-97.
  • 5Tikhonov A N.On the solution of ill-posed problems and the method of regularization[J].Soviet Mathematics,1963,4:1035-1038.
  • 6Rudin L,Osher S,Fatemi K.Nonlinear total variation- based noise removal algorilhms[J].Physica D,1992,60:259-268.
  • 7Marquina A,Osher S.Explicit algorithms for a new time dependent model based on level set motion for nonlinear de- blurring and noise removal[J].SIAM Journal of Scientific- Computing,2000,22(2):387405.
  • 8Levin A,Fergus R,IXirand F,et al.Image and depth from a conventional camera with a coded aperture[J].ACM Transactions on Graphics,2007,26(3):701709.
  • 9Levin A.Blind motion deblurring using image statistics[J].Proceedings of Neural Information Process Systems,2007:840-848.
  • 10Zhu S C,Mumford D.Prior learning and gibbs reaction diffusion[J].IEEE Trans Pattern Anal Intell,1997,19(12):1236-1250.

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部