期刊文献+

Traffic recovery time estimation under different flow regimes in traffic simulation

Traffic recovery time estimation under different flow regimes in traffic simulation
原文传递
导出
摘要 Incident occurrence and recovery are critical to the smooth and efficient operations of freeways. Although many studies have been performed on incident detection, clearance, and management, travelers and traffic managers are unable to accurately predict the length of time required for full traffic recovery after an incident occurs. This is because there are no practical studies available to estimate post-incident recovery time. This paper estimates post-incident traffic recovery time along an urban freeway using traffic simulation and compares the simulation results with shockwave theory calculations. The simulation model is calibrated and validated using a freeway segment in Baltimore, MD. The model explores different flow regimes (traffic intensity) and incident duration for different incident severity, and their effects on recovery time. A total of 726 simulations are completed using VISSIM software. Finally, the impact of congestion and incident delay on the highway network is quantified by a regression formula to predict traffic recovery time. The developed regression model predicts post-incident traffic recovery time based on traffic intensity, incident duration, and incident severity (ratio of lanes closure). In addition, three regression models are developed for different flow regimes of near-capacity, moderate, and low-traffic intensity. The model is validated by collected field data on two different urban freeways. Incident occurrence and recovery are critical to the smooth and efficient operations of freeways. Although many studies have been performed on incident detection, clearance, and management, travelers and traffic managers are unable to accurately predict the length of time required for full traffic recovery after an incident occurs. This is because there are no practical studies available to estimate post-incident recovery time. This paper estimates post-incident traffic recovery time along an urban freeway using traffic simulation and compares the simulation results with shockwave theory calculations. The simulation model is calibrated and validated using a freeway segment in Baltimore, MD. The model explores different flow regimes (traffic intensity) and incident duration for different incident severity, and their effects on recovery time. A total of 726 simulations are completed using VISSIM software. Finally, the impact of congestion and incident delay on the highway network is quantified by a regression formula to predict traffic recovery time. The developed regression model predicts post-incident traffic recovery time based on traffic intensity, incident duration, and incident severity (ratio of lanes closure). In addition, three regression models are developed for different flow regimes of near-capacity, moderate, and low-traffic intensity. The model is validated by collected field data on two different urban freeways.
出处 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第5期291-300,共10页 交通运输工程学报(英文版)
基金 the Maryland State Highway Administration Office of Traffic and Safety,National Transportation Center at Morgan State University,and the Federal Highway Administration through the Dwight Eisenhower Fellowship Program(Grant Number:MD-09-SP708B4L)
关键词 Traffic simulationIncident delayTraffic safetyNon-recurring incidentShockwave analysisRegression analysis Traffic simulationIncident delayTraffic safetyNon-recurring incidentShockwave analysisRegression analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部