期刊文献+

基于支持向量机与事例推理的Web服务QoS动态预测方法研究

Research Method on Web Service QoS Dynamic Prediction Based on Support Vector Machine and Case-based Reasoning
下载PDF
导出
摘要 在开放的网络环境下,Web服务的Qo S具有很强的动态性,而如何准确地预测未来一段时间之后Web服务的Qo S,关系到服务选择与组合的成败,是服务计算领域亟待解决的关键问题.针对此问题,在考虑Web服务负载、任务特征与服务Qo S相互关联的情况下,给出一种基于支持向量机与事例推理的Web服务Qo S动态预测方法.本文首先采用支持向量机对Web服务在一段时间之后的负载进行预测,然后,根据以上预测得出的负载结果和所要处理任务的特征信息,采用事例推理方法对Web服务处理某一具体任务时的Qo S进行预测.实验结果表明,该方法是可行的、有效的,并在一定程度上提高了Web服务Qo S的准确性. The quality of service( Qo S) of the Web service has a strong dynamism due to the openness of the network environment in which Web service is located. Howto accurately predict the Qo S of Web service after a period of time has a close relationship with the reliability of service selection and composition,and has become a key scientific issue that needs to be solved urgently in the field of services computing. In viewof the above issue,this paper proposes a method to predict the Qo S of Web service by taking a full consideration for the correlation between environmental factors and the Qo S of Web service. This method firstly predicts the load of Web service in a moment of future based on SVM,and then combined with the load and information of tasks need to be processed it applies CBR to predict the Qo S of Web service which is processing some specific tasks. Experimental results showthat this prediction method can improve the accuracy of Web service Qo S greatly compared with existing methods. The results provide a reliable basis for the objective evaluation and successful Web service composition.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第11期2520-2525,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金面上项目(61175066)资助 国家自然科学基金青年基金项目(61300124)资助 河南省高校科技创新人才资助计划项目(2011GGJS-056)资助 河南理工大学校博士基金项目资助 河南理工大学校创新团队 河南省教育厅科学技术重点研究项目(13B630034)资助
关键词 WEB服务 服务质量动态预测 支持向量机 事例推理 Web service quality of service dynamic prediction support vector machine case-based reasoning
  • 相关文献

参考文献4

二级参考文献42

  • 1丁永生.计算智能的新框架:生物网络结构[J].智能系统学报,2007,2(2):26-30. 被引量:12
  • 2MENASCE D A. QoS issues in web services[J]. Internet Computing, 2002, 6(6) : 72-75.
  • 3ZENG L, BENATALLAH B, DUMAS M, et al. Quality driven web services composition[ C] //Proceedings of the 12th International Conference on World Wide Web. New York: ACM Press, 2003: 411-421.
  • 4JΦSANG A, ISMAIL R, BOYD C. A survey of trust and reputation systems for online service provision[ J]. Decision Support Systems, 2007, 43(2) : 618-644.
  • 5FU Xiao-dong, ZOU Ping, JIANG Ying, et al. QoS consistency as basis of reputation measurement of web service[ C] // Proceedings of The First International Symposium on Data, Privacy, and E-Commerce. Los Alamitos : IEEE Computer Society Press, 2007: 391-396.
  • 6HART E, TIMMIS J. Application areas of AIS: the past, the present and the future [ J ]. Applied Soft Computing, 2008, 8(1) : 191-201.
  • 7MATZINGER P. Friendly and dangerous signals: is the tissue in control[J]. Nature Immunology, 2007 (8) : 11-13.
  • 8SWIMMER M. Using the danger model of immune systems for distributed defense in modern data networks[ J]. Computer Networks, 2007, 51(5) : 1315-1333.
  • 9VERDI F L, MAGALHES M F, CARDOZO E, et al. A service oriented architecture-based approach for interdomain optical network services[J]. Joumal of Network and Systems Management, 2007, 15(2) : 141-170.
  • 10刘克非,王红,许作萍.一种基于服务质量预测的Web服务选择方法[J].计算机技术与发展,2007,17(8):103-105. 被引量:11

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部