期刊文献+

基于事务截断的差分隐私频繁模式挖掘算法 被引量:2

Frequent Pattern Mining with Differential Privacy Based on Transaction Truncation
下载PDF
导出
摘要 现有基于ε-差分隐私模型的频繁模式挖掘算法存在全局敏感度过高与挖掘结果可用性较低的不足.设计一个基于事务截断的差分隐私频繁模式挖掘算法.算法首先采用基于指数机制的事务截断思想,对长事务进行截断处理,以有效降低算法的全局敏感度,并在此基础上提出基于事务截断的差分隐私频繁模式挖掘算法,而后提出可用于扩充Apriori算法候选集的最小噪声支持度标准,以进一步提升挖掘结果的可用性.实验对本文算法的频繁模式挖掘结果与同类算法进行比较分析.实验结果表明,本文算法可在满足ε-差分隐私的前提下,保证挖掘结果具有较高的可用性. Existing frequent pattern mining with the ε-differential privacy model has shortcoming of its greater global sensitivity and lower availability issues. We proposed a newfrequent pattern mining with differential privacy algorithm based on the transaction truncation. The algorithm firstly used the idea of transaction truncation based on exponential mechanism,truncating the long transaction to reduce the global sensitivity. Besides,we also proposed frequent pattern mining with differential privacy based on transaction truncation on this algorithm,and then we put forward the minimum noise support standard to expand the candidate set of the Apriori algorithm,which enhances the availability of data. Experiments compared and analyzed our algorithm results with similar algorithms. Experimental results showthat the algorithm can meet the ε-differential privacy and ensure high availability of mining results at the same time.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第11期2583-2587,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61300026)资助 福建省自然科学基金项目(2014J01230)资助
关键词 频繁模式挖掘 差分隐私 指数机制 事务截断 frequent pattern mining differential privacy exponential mechanism transaction truncation
  • 相关文献

参考文献1

二级参考文献16

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [C]//Proc of the 20th Int Conf on Very Large Data Bases (VLDB'94). New York: ACM, 1994: 487-499.
  • 2Sweeney L. k-anonymity: A model for protecting privacy [J]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10(5): 557-570.
  • 3Atzori M, Bonchi F, Giannotti F, et al. Anonymity preserving pattern discovery [J]. The VLDB Journal, 2008, 17(4) : 703-727.
  • 4Ganta S R, Kasiviswanathan S P, Smith A. Composition attacks and auxiliary information in data privacy [C]//Proc of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD08). New York: ACM, 2008: 265- 273.
  • 5WongR C W, Fu A, Wang K, et al. Can the utility of anonymi:ed data be used for privacy breaches[J]. ACM Trans on Knowledge Discovery from Data, 2011, 5(3) : 16- 39.
  • 6Dwork C. Differential privacy [C] //Proc of the 33th Colloquium on Automata, Languages and Programming (ICALP06). Berlin: Springer, 2006:1-12.
  • 7Dwork C. Differential privacy: A survey of results [C] // Proc of the 5th Int Conf on Theory and Applications of Models of Computation (TAMC08). Berlin: Springer, 2008: 1-19.
  • 8Dwork C, Lei J. Differential privacy and robust statistics [C] //Proc of the 41st Annual ACM Syrup on Theory of Computing (STOC09). New York: ACM, 2009:371-380.
  • 9Dwork C. The differential privacy frontier (extended abstract)[C] //Proe of the 6th Theory of Cryptography Conf (TCC09). Berlin: Springer, 2009:496-502.
  • 10Bhaskar R, Laxman S, Smith A, et al. Discovering frequent patterns in sensitive data [C] //Proc of the 16th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining (KDD10). New York: ACM, 2010:503-512.

共引文献28

同被引文献7

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部