期刊文献+

超空泡航行体鲁棒H_∞绝对稳定控制 被引量:1

Robust H_∞ absolute stability control for a supercavitating vehicle
下载PDF
导出
摘要 针对超空泡航行体(HSSV)在巡航阶段会受到强非线性滑行力,且伴随噪声干扰等问题,提出一种基于时域绝对稳定性的鲁棒H∞绝对稳定控制器的综合方法。利用backstepping方法,将原系统转化成子系统级联形式的跟踪模型,并在其基础上分析了滑行力的扇形区域条件。考虑系统中存在噪声干扰的情况,利用Lyapunov理论结合滑行力的扇形区域条件,给出了线性矩阵不等式(LMI)约束形式的鲁棒H∞绝对稳定控制器综合方法。仿真结果表明,所设计的鲁棒H∞绝对稳定控制器可以实现闭环系统的绝对稳定,同时在零初始条件下具有给定的H∞性能。 In cruise phase,high-speed supercavitating vehicles( HSSV) face a strong nonlinear planing force and noise disturbance. To solve these problems,a synthesis method for robust H∞absolute stability controller was proposed based on absolute stability in the time domain. The original system was transformed into a cascade connection of two subsystems. Then,based on the connection,the sector bounded conditions of the planing force were analyzed. Next,in order to handle the noise disturbance,the method was included in the form of a linear matrix inequality,by applying Lyapunov theory together with the sector bounded conditions. Simulation results show that the closed-loop system can obtain absolute stability with the resulting controller,and simultaneously achieve the prescribed H∞performance under zero initial conditions.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第10期1370-1375,共6页 Journal of Harbin Engineering University
基金 国家青年科学基金资助项目(51209049) 黑龙江省青年科学基金资助项目(QC2012C033 QC2011C031) 黑龙江省博士后科研启动金资助项目(LBH-Q12127)
关键词 超空泡 噪声干扰 扇形区域条件 鲁棒H∞ 绝对稳定性 supercavity noise disturbance sector bounded conditions robust H∞ absolute stability
  • 相关文献

参考文献12

  • 1VANEK B, BOKOR J, BALAS G J, et al. Longitudinal mo- tion control of a high-speed supercavitation vehicle [ J ]. Jour- nal of Vibration and Control, 2007, 13(2) : 159-184.
  • 2DZIELSKI J, KURDILA A. A benchmark control problemfor supercavitating vehicles and an initial investigation of so- lutions[ J]. Journal of Vibration and control, 2003, 9 (7) : 791-804.
  • 3KIRSCHNER I N, KRING D C, STOKES A W, et al. Con- trol strategies for supercavitating vehicles [ J ]. Journal of Vi- bration and Control, 2002, 8(2): 219-242.
  • 4KULKARNI S S, PRATAP R. Studies on the dynamics of a supercavitating projectile [ J ]. Applied Mathematical Model- ling, 2000, 24(2) : 113-129.
  • 5LIN G, BALACHANDRAN B, ABED E H. Nonlinear dy- namics and control of supercavitating bodies [ C ]//Collec- tion of Technical Papers-AIAA Guidance, Navigation, and Control Conference. Reston, USA, 2006: 3151-3164.
  • 6LIN Guojian, BALACHANDRAN B, ABED E H. Dynamics and control of supercavitating vehicles [ J ]. Journal of Dy- namic Systems, Measurement, and Control, 2008, 130(2) : 021003.
  • 7范辉,张宇文.超空泡航行器稳定性分析及其非线性切换控制[J].控制理论与应用,2009,26(11):1211-1217. 被引量:12
  • 8范辉,张宇文.基于圆判据的超空化航行器状态反馈控制研究[J].西北工业大学学报,2009,27(5):694-700. 被引量:3
  • 9MAO Xiaofeng, WANG Qian. Nonlinear control desgn for a supercavitating vehicle [ J ]. IEEE Transactions on Control Systems Technology, 2009, 17(4) : 816-832.
  • 10KHALIL H K. Nonlinear Systems[ M]. 3rd ed. Englewood Cliffs, N J: Prentice-Hall, 2002: 264-270.

二级参考文献18

  • 1SAVCHENKO YU N. Control of supercavitation flow and stability ofsupercavitating motion of bodies[R]. Paper presented at the RTO AVT Lecture Series on "Supercavitating Flows" , held at the von Karman Institute(VKI) in Brussels, Belgium, February 12-16, 2001.
  • 2KIRSCHNER I N, UHLMAN J S. Overview of high-speed supercavitating vehicle control[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006:3100- 3116.
  • 3JOHN DZIELSKI, ANDREW KURDILA. A Benchmark control problem for supercavitating vehicles and an initial investigation of solutions[J]. Journal of Vibration and Control, 2003, 9(7): 791 - 804.
  • 4KIRSCHNER I N, KRING D C, STORKES A W, et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control, 2002, 8(2): 219 - 242.
  • 5KULKARNI S S, PRATAP R. Studies on the dynamics of a supercavitating projectile[J]. Applied Mathematical Modeling, 2000, 24(2): 113 - 129.
  • 6SHAO Y, MESBAHI M, BALAS G J. Planing, switching and supercavitating flight control[C]//Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. Austin, Texas: American Institute of Aeronantics and Astronautics, 2003:1 - 8.
  • 7LING J, BALACHANDRAN B, ABED E H. Nonlinear dynamics and bifurcations of a supercavitating vehicle[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 753 -761.
  • 8BAVANEK L, BOKOR J, BALAS G. Theoretical aspects of high- speed supercavitation vehicle control[C] //Proceedings of the 2006 American Control conference. Minneapolis, Minnesota, USA: IEEE, 2006:5263 - 5268.
  • 9BALAS G J, BOK J O, VANEK B A, et al. Control of High-Speed Underwater Vehicles[M]. Heidelberg, Berlin: Springer, 2006, 329: 25 - 44.
  • 10KHALILHK.非线性系统(第3版)[M].朱义胜,懂辉,李作洲,译.北京:电子工业出版社,2005,7:166-205.

共引文献12

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部