期刊文献+

电致驱动巴基纸/形状记忆聚合物复合材料性能 被引量:3

Properties of electrically actuated shape memory polymer composites reinforced by buckypaper
下载PDF
导出
摘要 为了研究不同质量比例石墨烯(few-layer graphene,FLG)和碳纳米纤维(carbon nanofiber,CNF)对混杂FLG/CNF巴基纸导电性能的影响,测量了FLG/CNF的质量比例由0提高至50%时巴基纸的体积电阻率,并检测了混杂FLG/CNF巴基纸的微观形态,通过实验还研究了FLG/CNF巴基纸增强形状记忆聚合物复合材料的电致驱动效应及温度场分布情况。试验结果表明:FLG/CNF巴基纸中碳纳米纤维填充了石墨烯片层间的空隙,碳纳米纤维和石墨烯片相互搭接形成连续网络;此外,巴基纸中碳纳米纤维和石墨烯比例的变化可导致巴基纸的电阻值发生改变。巴基纸增强形状记忆聚合物复合材料在90 s时完成了形状恢复,和试样初始形状相比,试样形状约恢复了95%。 In order to study the effect of few-layer graphene( FLG) and carbon nanofiber( CNF) on the electrical conductivity of mixed FLG / CNF buckypaper,the volume resistivity of buckypaper was measured as the quality ratio of FLG / CNF increased from 0 to 50%. The microcosmic morphology of FLG / CNF buckypaper was observed using a scanning electron microscope. The electrical actuation and the temperature distribution of the shape memory polymer( SMP) composites reinforced by FLG / CNF buckypaper were also tested. The results show that CNF bridged the gaps between the FLG layers,and an entangled and continuous network of FLG and CNF is observed. Furthermore,the ratio changes between FLG and CNF in the buckypaper can lead to change in the electrical resistivity of the buckypaper. The shape recovery of SMP composites reinforced by buckypaper is completed at about 90 s. The recovered shape of the specimen is approximately 95% similar to its original shape.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第10期1417-1420,共4页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(E201454)
关键词 石墨烯 碳纳米纤维 纳米纸 形状记忆聚合物 复合材料 graphene carbon nanofiber nanopaper buckypaper shape memory polymer composites
  • 相关文献

参考文献12

  • 1LENDLEIN A, LANGER R. Biodegradable, elastic shape- memory polymers for potential biomedical applications [ J ]. Science, 2002, 296(5573) : 1673-1676.
  • 2XIE Tao. Tunable polymer multi-shape memory effect [ J ]. Nature, 2010, 464(7286) : 267-270.
  • 3WANG C C, HUANG W M, DING Z, et al. Cooling-water- responsive shape memory hybrids [ J ]. Composites Scienceand Technology, 2012, 72(10) : 1178-1182.
  • 4LU Haibao, LIANG Fei, GOU Jihua. Nanopaper enabled shape-memory nanocomposite with vertically aligned nickel nanostrand: controlled synthesis and electrical actuation [J]. Soft Matter, 2011, 7( 16): 7416-7423.
  • 5LUO Xiaofan, MATHER P T. Conductive shape memory nanocomposites for high speed electrical actuation [ J ]. Soft Matter, 2010, 6(10): 2146-2149.
  • 6MATHER P T, LUO Xiaofan, ROUSSEAU I A. Shape memory polymer research [ J ]. Annual Review of Materials Research, 2009, 39: 445-471.
  • 7MENG Qinghao, HU Jinlian. A review of shape memory pol- ymer composites and blends [ J ]. Composites Part A : Ap- plied Science and Manufacturing, 2009, 40 ( 11 ) : 1661- 1672.
  • 8VOHRER U, KOLARIC I, HAQUE M H, et al. Carbon nanotube sheets for the use as artificial muscles [ J ]. Car- bon, 2004, 42(5/6) : 1159-1164.
  • 9LI Chunyu, THOSTENSON E T, CHOU T W. Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites [ J ]. Composites Science and Technology, 2008, 68(6): 1445-1452.
  • 10ENO M, KIM Y A, HAYASHI T, et al. Vapor-grown car- bon fibers (VGCFs) : basic properties and their battery ap- plications[J]. Carbon, 2001, 39(9): 1287-1297.

同被引文献38

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部