期刊文献+

结合区域颜色一致性和图割的复杂场景文本分割方法 被引量:1

Complex scene text segmentation method using region color consistence and graph cut
原文传递
导出
摘要 针对复杂场景文本难以有效分割的问题,提出一种复杂场景文本分割方法.首先,使用简单的线性迭代聚类(SLIC)算法将原始图像分割为若干局部区域,并在其区域邻接图上构建图割模型;然后,采用高斯混合模型(GMMs)和支持向量机(SVM)后验概率模型对场景文本进行建模,并引入每个局部区域与模型之间的匹配度用于计算似然能.为了增强GMMs的鉴别力,在参数学习中引入模型性能描述子,自适应地获得模型参数.实验结果表明,所提出的算法能够较好地处理复杂场景文本分割问题,文本的识别率得到了明显的提升. To solve the problem of text segmentation in complex scene images, a method of complex scene text segmentation is proposed. The original image is firstly divided into some small homogeneous regions by using the simple linear iterative clustering(SLIC) algorithm, and the graph model is constructed based on the region neighborhood connection diagram.Then, Gaussian mixture models(GMMs) and support vector machine(SVM) post probability based model are proposed to make model for foreground(text), and the degree of each region's fitness to models is introduced to calculate likelihood energy. In addition, to improve the discrimination ability of GMMs, a model performance descriptor is introduced to estimate parameters of GMMs adaptively. Experimental results show that the proposed method can deal with the problem of complex scene text segmentation efficiently, and the recognition precision rate is improved significantly.
作者 刘晓佩
出处 《控制与决策》 EI CSCD 北大核心 2015年第11期1987-1992,共6页 Control and Decision
基金 国家自然科学基金项目(61302133) 陕西省科技研究计划工业攻关项目(2014K06-37 2013K07-35 2015GY023)
关键词 文档分析 场景文本 文本分割 图割 document analysis scene text text segmentation graph cut
  • 相关文献

参考文献16

  • 1Sharma N, Pal U, Blumenstein M. Recent advances in video based document processing: A review[C]. Proc of the 10th IAPR Int Workshop on Document Analysis Systems. Queenslands: IEEE Press, 2012: 63-68.
  • 2Zhang H G, Zhao K L, Song Y Z, et al. Text extraction from natural scene image: A survey[J]. Neurocomputing, 2013, 122: 310-323.
  • 3姜维,卢朝阳,李静,刘晓佩,姚超.基于视觉显著性和提升框架的场景文字背景抑制方法[J].电子与信息学报,2014,36(3):617-623. 被引量:3
  • 4Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation[J]. Int J of Computer Vision, 2006, 70(2): 109-131.
  • 5刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:142
  • 6Shi C, Xiao B, Wang C, et al. Adaptive graph cut based binarization of video text images[C]. The 10th IAPR Int Workshop on Document Analysis Systems. Queenslands: IEEE Press, 2012: 58-62.
  • 7Mishra A, Alahari K, Jawahar C V. An MRF model for binarization of natural scene text[C]. Proc of the 1 lth Int Conf on Document Analysis and Recognition. Beijing: IEEE Press, 2011: 11-16.
  • 8徐胜军,韩九强,刘光辉,刘欣.基于局部空间自适应MRF模型的图像分割[J].控制与决策,2013,28(6):889-893. 被引量:5
  • 9韩守东,赵勇,陶文兵,桑农.基于高斯超像素的快速Graph Cuts图像分割方法[J].自动化学报,2011,37(1):11-20. 被引量:56
  • 10Aehanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Trans on PAMI, 2012, 34(11): 2274-2282.

二级参考文献113

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 2006, 70(2): 109-131.
  • 5Han S D, Tao W B, Wang D S, Tai X C, Wu X L. Image segmentation based on grabcut framework integrating multiscale nonlinear structure tensor. IEEE Transactions on Image Processing, 2009, 18(10): 2289-2302.
  • 6Delong A, Boykov Y. A scalable graph-cut algorithm for N-D grids. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 7Han S D, Tao W B, Wu X L, Tai X C, Wang T J. Fast image segmentation based on multilevel banded closed-form method. Pattern Recognition Letters, 2010, 31(3): 216-225.
  • 8Li Y, Sun J, Tang C K, Shum H Y. Lazy snapping. ACM Transactions on Graphics, 2004, 23(3): 303--308.
  • 9Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 10Christoudias C M, Georgescu B, Meer P. Synergism in low level vision. In: Proceedings of the 16th International Conference on Pattern Recognition. Washington D.C., USA: IEEE, 2002. 150-155.

共引文献196

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部