期刊文献+

基于贡献率的离散Hopfield结构优化 被引量:3

Structure optimization of discrete Hopfield based on contribution rate
原文传递
导出
摘要 针对离散Hopfield神经网络(DHNN)结构复杂的问题,提出一种基于贡献率的结构优化算法.该算法利用奇异值分解方法对连接权值进行设计,进而利用贡献率的方法对DHNN进行结构优化.优化后的网络降低了DHNN结构的复杂程度,使网络具有类似生物神经网络的稀疏结构,实现了DHNN网络结构的优化.最后,通过水质评价和数字识别对该算法进行验证,表明了所提出算法的有效性和可行性,同时,还验证了其对于大规模DHNN的有效性和适用性. To solve the problem of complex structure for the discrete Hopfield neural network(DHNN), a structural optimization algorithm based on the contribution rate is proposed. The singular value decomposition method is used to design the connection weights. On the basis of the design, the contribution rate method is adopted to prune the connection weights. The structural complexity of the DHNN is reduced after structure optimization, and it makes the DHNN with sparse network structure which is similar to biological neural network realize the structure optimization. Finally, the water quality evaluation and digital recognition are used to verify the effectiveness and feasibility of the structural optimization algorithm,and also demonstrate the effectiveness and applicability of the proposed algorithm for large scale DHNN.
出处 《控制与决策》 EI CSCD 北大核心 2015年第11期2061-2066,共6页 Control and Decision
基金 国家自然科学基金杰出青年项目(61225016) 国家自然科学基金项目(61034008 61203099) 北京市科技计划课题(Z141100001414005) 北京市科技专项课题(Z141101004414058) 北京市科技新星计划项目(Z131104000413007) 北京市教育委员会科研计划项目(KZ201410005002 KM201410005001)
关键词 离散HOPFIELD 结构优化 连接权值 贡献率 discrete Hopfield structure optimization connection weights contribution rate
  • 相关文献

参考文献16

  • 1Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proc of the National Academy of Sciences, 1982, 79(8): 2554-2558.
  • 2Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proc of the National Academy of Sciences, 1984, 81(10): 3088-3092.
  • 3Pajares Gonzalo, Guijarro Maria, Ribeiro Angela. A Hopfield neural network for combining classifers applied to textured images[J]. Neural Networks, 2010, 23(1): 144- 153.
  • 4Pengsheng Zheng, Wansheng Tang, Jianxiong Zhang. A simple method for designing efficient small-world neural networks[J]. Neural Networks, 2010, 23(2): 155-159.
  • 5Mei Shaohui, He Mingyi, Shen Zhiming. Optimizing Hopfield neural network for spectral mixture unmixing on GPU platform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 818-822.
  • 6. Ghatee Mehdi, Niksirat Malihe. A Hopfield neural network applied to the fuzzy maximum cut problem under credibility measure[J]. Information Sciences, 2013, 229: 77-93.
  • 7高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:120
  • 8Oshima Hiraku, Odagaki Takashi. Storage capacity and retrieval time of small-world neural networks[J]. Physical Review E, 2007, 76(3): 036114(1)-036114(6).
  • 9Watts D J, Strogatz S H. Collective dynamics of "small- world" networks[J]. Nature, 1998, 393 (6684): 440-442.
  • 10Bohland J W, Minal A A. Effcient associative memory using small-world architecture[J]. Neurocomputing, 2001, 38: 489-496.

二级参考文献66

  • 1王直杰,范宏,严晨.动态突触型Hopfield神经网络的动态特性研究[J].控制与决策,2006,21(7):771-775. 被引量:3
  • 2Garey M R,Johnson D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].San Francisco:Freeman W H,1979.
  • 3Lawer E,Lenstra J,Ronnooy K A,et al.The Traveling Salesman Problem[M].New York:Wiley-International Publication,1985.
  • 4Hopfield J J,Tank D W.Neural Computation of Decision in Optimization Problem[J].Biol Cybern,1985,52(1):141-152.
  • 5Wilson V,Pawlay G S.On the Stability of the TSP Problem Algorithm of Hopfield and Tank[J].Biol Cybern,1988,58(1):63-70.
  • 6Xu X,Tsai W T.Effective Neural Algorithms for the Traveling Salesman Problem[J].Neural Network,1991,4(1):193-205.
  • 7Wang S,Tsai C M.Hopfield Nets with Time-varying Energy Function for Solving the Traveling Salesman Problem[A].Int J Conf on Neural Networks[C].Seattle,Washington,1991:807-812.
  • 8Aiyer S V B,Niranjan M,Fallside F.A Theoretical Investigation into the Performance of the Hopfield Model[J].IEEE Trans on Neural Networks,1990,1(2):204-215.
  • 9Ackley D H,Hinton G E,Sejnowski T J.A Learning Algorithm for Boltzmann Machines[J].Cognitive Science,1985,9(1):147-169.
  • 10Tang Z,Jin H H,Murao K,et al.A Gradient Ascent Learning for Hopfield Networks[J].Trans of IEICE of Japan,2000,J83-A(3):319-331.

共引文献127

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部