期刊文献+

细小圆管内Micro-PCMS紊流对流传热特性的CFD?DPM模拟 被引量:6

CDF?DPM Simulation on Characteristics of Turbulent Flow and Heat Transfer for Micro-PCMS in Mini-pipe
原文传递
导出
摘要 基于计算流体动力学?离散相模型模拟研究恒热流密度条件下3D圆形管道内相变微胶囊悬浮液(Micro-PCMS)紊流的对流传热特性,讨论了微胶囊质量分数对管道内悬浮液速度、温度及壁面温度的影响,获得了沿流动方向不同截面的速度分布、温度分布及修正的局部Nu数.结果表明,靠近管道壁面处,相变微胶囊的存在使悬浮液速度降低,且随其含量增加而降低愈加明显;管内悬浮液温度分布分为非融化区、融化区和完全融化区;管道壁面温度、悬浮液出口温度均比纯水降低,相变微胶囊含量为12%,16%,20%(?)时,出口处悬浮液温度分别降低25.5%,33.9%,42.4%,壁面温度分别降低23.9%,31.0%,39.2%.且因存在相变吸热及扰动的共同效应,管道内温度分布从规则的抛物线形逐渐演变为具有尖峰的曲线. A CFD-DPM model was used to study the characteristics of turbulent flow and heat transfer for microencapsulated phase change material slurry(Micro-PCMS) in a 3D mini-pipe at constant heat flux. The effect of Micro-PCM mass fraction on velocity and temperature of Micro-PCMS, and wall temperature was examined. Along the flowing direction, the parameters of velocity, temperature and correctional Nu number are obtained on the different cross sections. The results show that the slurry velocity near pipe wall decreases because of Micro-PCM particles, and the decrease is more obvious with the increase of content of Micro-PCM particles. Three apparent regions of non-melting region, melting region and melted region present in pipe are divided for Micro-PCMS. The pipe wall temperature and outlet temperature of the slurry are lower than those of pure water. Under three Micro-PCM mass fractions of 12%, 16% and 20%, the slurry outlet temperature is reduced by 25.5%, 33.9% and 42.4%, and the pipe wall temperature 23.9%, 31.0% and 39.2%, compared with pure water. Because of the common effect of phase change heat absorption and particle disturbance, the slurry temperature field distribution changes from regular parabola to leptokurtic curve.
出处 《过程工程学报》 CAS CSCD 北大核心 2015年第5期758-763,共6页 The Chinese Journal of Process Engineering
基金 国家自然科学基金资助项目(编号:51306002) 安徽省自然科学基金青年基金资助项目(编号:1508085QE95)
关键词 相变微胶囊悬浮液 随机轨道模型 相变潜热 传热 microencapsulated phase change material slurry stochastic trajectory model phase change latent heat heat transfer
  • 相关文献

参考文献18

  • 1Mulligan J C, Colvin D P, Bryant Y G. Microencapsulated PCM Suspension for Heat Transfer in Spacecraft Thermal Systems [J]. Journal of Spacer Rockets, 1996, 33(2): 278-284.
  • 2Ehang Y P, Hu X X, Wang X. Theoretical Analysis of Convective Heat Transfer Enhancement of Microencapsulated Phase Change Materials Slurries [J]. Heat Mass Transfer, 2003, 40(1/2): 59-66.
  • 3Lin C, Ting W, Yah Z, et al. Characterization of Thermal and Hydrodynamic Properties for Microencapsulated Phase Change Slurry (MPCS) [J]. E~xgy Convers. Manage., 2014, 79(1): 317-333.
  • 4Giro-Paloma J, Barreneehe C, Martinez M, et al. Comparison of Phase Change Slurries: Physicochemical and Thermal Properties [J]. Energy, 2015, 87(1): 223-227.
  • 5Choi E, Cho Y I, Lorsch H G. Forced Convection Heat Transfer with Phase-change-material Slurries: Turbulent Flow in a Circular Tube [J]. Int. J. Heat Mass Transfer, 1994, 37(2): 207-215.
  • 6鲁进利,郝英立.细小尺度下潜热型功能热流体压降与传热特性[J].化工学报,2010,61(6):1385-1392. 被引量:15
  • 7Taherian H, Alvarado J L, Tumuluri K, et al. Fluid Flow and Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in Turbulent Flow [J]. J. Heat Transfer, 2014, 136(1): 1-7.
  • 8Inaba H, Kim M J, Horibe A. Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries with PluralMicrocapsules Having Different Diameters [J]. J. Heat Transfer, 2004, 126(4): 558-565.
  • 9Sabbah R, Farid M M, Said A H. Micro-channel Heat Sink with Slurry of Water with Microencapsulated Phase Change Material: 3D-Numerical Study [J]. Appl. Therm. Eng., 2009, 29(2/3): 237-244.
  • 10靳健,刘沛清,林贵平.层流下潜热型功能流体在内嵌圆柱圆管中的传热特性数值模拟分析[J].中国科学(E辑),2009,39(5):897-903. 被引量:6

二级参考文献67

  • 1郝英立 ,A Khan ,Yong-X TAO .圆管内潜热型功能流体对流换热的实验研究[J].工程热物理学报,2005,26(2):283-285. 被引量:19
  • 2刘永兵,陈纪忠,阳永荣.管道内液固浆液输送的数值模拟[J].浙江大学学报(工学版),2006,40(5):858-863. 被引量:35
  • 3郝英立,KHAN A,TAO Yong-X.圆管内对流换热过程中潜热型功能流体流动阻力特性的实验研究[J].热科学与技术,2006,5(4):283-287. 被引量:6
  • 4J A C Humphrey. Fundamentals of Fluid Motion in Erosion by Solid Particle Impact. Int. J. Heat and Fluid Flow, 1990, 11(3): 170-195
  • 5Neisic S, Postlethwaite J. Relationship Between the Structure of Disturbed Flow and Erosion/Corrosi-on. Corrosion, 1990, 46:874-880
  • 6Crowe C T, Sommerfeld M, Tsuji Y.Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton, 1998
  • 7Di Felice R. The Voidage Function for Fluid-Particle Interaction Systems. Int. J. Multiphase Flow, 1994, 20: 153-159
  • 8W Blatt, T Kohley, U Lotz, et al. The Influence of Hydrodynamics on Erosion-Corrosion in Two-Phase Liquid- Particle Flow. Corrosion, 1989, 45:793-804
  • 9Choi E, Cho Y I, Lorsch H G. Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube. Int J Heat Mass Tran, 1994, 37(2): 207--215
  • 10Goel M, Roy S K, Sengupta S. Laminar forced convection heat transfer in microencapsulated phase change material suspension. Int J Heat Mass Tran, 1994, 37(4): 593--604

共引文献24

同被引文献33

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部