期刊文献+

ZnO纳米线的制备及其气敏特性 被引量:2

Fabrication and Gas Sensing Properties of ZnO Nanowires
下载PDF
导出
摘要 采用水热法制备了ZnO纳米线,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对其物相及微观形貌进行了表征和分析。测试结果表明,ZnO纳米线的平均直径和长度分别约为250 nm和10μm。同时,研究了ZnO纳米线气体传感器对挥发性有机化合物(VOC)的气敏特性。实验结果表明,ZnO纳米线的气体传感器在最佳工作温度200℃下,对浓度5×10-7乙醇和丙酮气体的灵敏度分别可达4.58和2.63,相应的响应时间分别为9和6 s,恢复时间均为3 s。其最低检测极限为5×10-8,表明该传感器对不同环境中乙醇和丙酮气体的检测具有潜在应用前景。最后,对ZnO纳米线气体传感器的气敏机理进行了讨论。 ZnO nanowires were fabricated by the hydrothermal method.The phase and micro morphology of the prepared ZnO nanowires were characterized by the X-ray diffraction(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The measured results show that the average diameter and length of the ZnO nanowires are about 250 nm and 10μm,respectively.Meanwhile,the gas sensing properties of the ZnO nanowire gas sensor for volatile organic compounds(VOCs)were investigated.The experimental results show that the gas sensing sensitivities of the ethanol and acetone can reach to 4.58 and 2.63 under the concentration of 5×10-7 at optimal working temperature(200℃),and the corresponding response time is 9 and 6 s respectively,and the recovery time both is3 s.Moreover,the minimum detection limit can be as low as 5×10-8,demonstrating that such ZnO nanowire gas sensor has potential gas sensing application for detecting the ethanol or acetone in different environments.Finally,the gas sensing mechanism of the ZnO nanowire gas sensor was discussed.
出处 《微纳电子技术》 CAS 北大核心 2015年第11期701-706,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(51205274) 博士点基金资助项目(20121402120008) 山西省青年科学基金资助项目(2013021017-2) 山西省归国留学择优资助项目([2014]95) 山西省归国留学基金资助项目(2013-035) 山西省科技重大专项资助项目(20121101004) 山西省高等学校特色重点学科建设项目(晋教财[2012]45号)
关键词 水热法 ZNO纳米线 挥发性有机化合物(VOC) 气敏特性 灵敏度 hydrothermal method ZnO nanowire volatile organic compound(VOC) gas sensing property sensitivity
  • 相关文献

参考文献18

  • 1NGUYEN H, EL-SAFTY SA. Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors [J]. The Journal of Physical Chemistry: C, 2011, 115 (17): 8466-8474.
  • 2VIJAYA J J, KENNEDY L J, SEKARAN G, et al. Prepara- tion and VOC gas sensing properties of Sr (Ⅱ)-added copper aluminate spinel composites [J]. Sensors and Actuators: B, 2008, 134 (2): 604-612.
  • 3ZHAI Q, DU B, FENG R, et al. A highly sensitive gas sen- sor based on Pal-doped Fe304 nanoparticles for volatile organic compounds detection [J]. Analytical Methods, 2014, 6 (3): 886 - 892.
  • 4HOA N D, EI;SAFTY SA. Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocom- posite monoliths [ J ]. Analytical Methods, 2011, 3 (9): 1948- 1956.
  • 5CHANG C T, CHEN BY. Toxicity assessment of volatile or- ganic compounds and pnlyeyclic aromatic hydrocarbons in mo- torcycle exhaust [J]. Journal of hazardous materials, 2008, 153 (3): 1262- 1269.
  • 6WARNEKE C, de GOUW JA, KUSTER WC, et al. Valida- tion of atmospheric VOC measurements by proton-transfer- reaction mass spectrometry using a gas-chromatographic pre- separation method [J]. Environmental Science & Technology, 2003, 37 (11): 2494-2501.
  • 7LUO X J, LOU Z, WANG L, et al. Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors [J]. New Jour- nalof Chemistry, 2014, 38 (1): 84-89.
  • 8CHEN X S, JING X, WANG J, et al. Self-assembly of ZnO nanopartieles into hollow microspheres via a facile solvother- real route and their application as gas sensor [J]. Cryst Eng- Comm, 2013, 15 (36): 7243-7249.
  • 9TANG W, WANG J. Mechanism for toluene detection of flower- like ZnO sensors prepared By hydrothermal approach: charge transfer [ J ]. Sensors and Actuators: B, 2015, 2070(6): 66-73.
  • 10BAGHERI M, HAMEDANI N F, MAHJOUB AR, et al. Highly sensitive and selective ethanol sensor based on Sm203-1oaded flower-like ZnO nanostructure[J].Sensors and Actuators: B, 2014, 191 (4): 283-290.

二级参考文献21

  • 1Cha S, Jang J, Choi Y, Amaratunga G, Ho G, Welland M, Hasko D, Kang D J, Kim J 2006 Appl. Phys. Lett. 89 263102.
  • 2Wang J, Sun X, Huang H, Lee Y, Tan O, Yu M, Lo G, Kwong D 2007 Appl. Phys. A 88 611.
  • 3Musarrat J, Muhammad A I, R V Kumar, Mansoor A, Muhammad T J 2014 Chin. Phys. B 23 018504.
  • 4Lim J H, Kang C K, Kim K K, Park I K, Hwang D K, Park S J 2006 Adv. Mater. 18 2720.
  • 5Jiang W, Gao H, Xu L L, Ma J N, Zhang E, Wei P, Lin J Q 2011 Chin. Phys. B 20 037307.
  • 6Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S, Zhao Y 2013 Chin. Phys. B 22 118801.
  • 7Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106.
  • 8Park W I, Kim D, Jung S W, Yi G C 2002 Appl. Phys. Lett. 80 4232.
  • 9Qiu J, Guo M, Feng Y, Wang X 2011 Electrochim. Acta 56 5776.
  • 10Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P 2005 Nano Lett. 5 1231.

共引文献5

同被引文献25

  • 1KIRSCHBAUM M U F,SAGGAR S,TATE K R,et al.Quantifying the climate-change consequences of shifting land use between forest and agriculture[J].Science of the Total Environment,2013,465(6):314-324.
  • 2AL-HASSANI A A,ABBAS H F,DAUD W M A W.Hydrogen production via decomposition of methane over activated carbons as catalysts:full factorial design[J].International Joural of Hydrogen Energy,2014,39(13):7004-7014.
  • 3SHAN J,HUANG W,NGUYEN L,et al.Conversion of methane to methanol with a bent mono(μ-oxo)dinickel anchored on the internal surfaces of micropores[J].Langmuir,2014,30(28):8558-8569.
  • 4VUONG N M,HIEU N M,HIEU H N,et al.Ni2O3-decorated SnO2particulate films for methane gas sensors[J].Sensors and Actuators:B,2014,192(3):327-333.
  • 5HAO S X,WEN J,YU X P,et al.Effect of the surface oxygen groups on methane adsorption on coals[J].Applied Surface Science,2013,264:433-442.
  • 6EUGSTER W,KLING G W.Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies[J].Atmospheric Measurement Techniques,2012,5(8):1925-1934.
  • 7LI L,NIU S F,QU Y,et al.One-pot synthesis of uniform mesoporous rhodium oxide/alumina hybrid as high sensitivity and low power consumption methane catalytic combustion micro-sensor[J].Journal of Materials Chemistry,2012,22(18):9263-9267.
  • 8XU J Q,HAN J J,ZHANG Y,et al.Studies on alcohol sensing mechanism of ZnO based gas sensors[J].Sensors and Actuators:B,2008,132(1):334-339.
  • 9SHEN J,ALGEO T J,FENG Q,et al.Volcanically induced environmental change at the Permian-Triassic boundary:related to west Siberian coal-field methane releases[J].Journal of Asian Earth Sciences,2013,75(8):95-109.
  • 10VUONG N M,HIEU N M,KIM D,et al.Ni2O3decoration of In2O3nanostructures for catalytically enhanced methane sensing[J].Applied Surface Science,2014,317(13):765-770.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部