期刊文献+

氧化剂在TSV铜膜CMP中钝化机理 被引量:3

Passivation Mechanism of the Oxidant for the TSV Copper Film in the CMP
下载PDF
导出
摘要 为实现TSV硅衬底表面铜去除速率的优化,对影响TSV铜去除速率的最主要因素抛光液组分(如磨料、螯合剂、活性剂和氧化剂)中的氧化剂进行分析。通过对不同体积分数的氧化剂电化学实验进行钝化机理的研究,从而得到最佳的氧化剂体积分数,再进行铜的静态腐蚀实验和抛光实验对铜的去除速率进行验证。实验结果表明,氧化剂体积分数为0.5%时铜具有较高的去除速率,能够满足工业需要。最后,对CMP过程机理和钝化机理进行分析,进一步验证了氧化剂在TSV铜化学机械平坦化中的作用。 For the optimization of the through silicon via(TSV)Si substrate surface removal rate of copper,the oxidation agent as one of the main impact factors on the TSV copper removal rate,i.e.the components of the polishing fluid(such as the abrasive,chelating agent,active agent and oxidant)was analyzed.The electrochemical experiments of the passivation mechanism research were carried out with the oxidant agents of different volume fractions to obtain the optimum oxidant agent volume fraction.And then the copper removal rate was verified through the copper static corrosion and polishing experiments.The experimental results show that copper has a higher removal rate for the oxidant with the volume fraction of 0.5%,satisfying the requirements of the industry.Finally,the CMP process mechanism and passivation mechanism were analyzed,and the effect of the oxidation agent in the process of TSV copper chemical mechanical was further verified.
出处 《微纳电子技术》 CAS 北大核心 2015年第11期737-740,共4页 Micronanoelectronic Technology
基金 国家中长期科技发展规划02科技重大专项(2009ZX02308) 河北省青年自然科学基金资助项目(F2015202267) 河北省教育厅项目(QN2014208)
关键词 去除速率 硅通孔化学机械抛光(TSV CMP) 开路电位 静态腐蚀电位 钝化作用 氧化剂 removal rate through silicon via chemical mechanical polishing(TSV CMP) open circuit potential static corrosion potential passivation oxidant
  • 相关文献

参考文献9

  • 1WU S D, KAMBARA M, YOSHIDA T. Superhigl-rate epi- taxial silicon thick film deposition from triehlorosilane by me- soplasma chemical vapor deposition [J]. Plasma Chemistry and Plasma Processing, 2013, 33 (2) : 433 - 451.
  • 2WANG Q, TEPLINC W, STRADINS P, et al. Significant improvement in silicon chemical vapor deposition epitaxy above the surface dehydrogenation temperature[J]. Journal of Applied Physics, 2006, 100 (9): 093520-1 -093520-5.
  • 3YANG J C, OH D W, LEE G W, et al. Step height removal mechanism of chemical mechanical planarization (CMP) for sub- nano-surface finish [J]. Wear, 2010, 268 (3/4) : 505 - 510.
  • 4SEAL S, KUIRY S C, HEINMEN B. Effect of glycine and hydrogen peroxide on chemical mechanical planarization of cop- per [J]. Thin Solid Films, 2003, 423 (2): 243-251.
  • 5王傲尘,王胜利,刘玉岭,李炎.Electrochemical investigation of copper chemical mechanical planarization in alkaline slurry without an inhibitor[J].Journal of Semiconductors,2014,35(2):141-146. 被引量:6
  • 6PANDIJAS, ROY D, BABUS V. Achievement of high planariza- tion efficiency in CMP of copper at a reduced down pressure [J]. Mieroeleetronie Engineering, 2009, 86 (3) : 367 - 373.
  • 7ZIOMEK-MOROZ M, MILLER A, HAWK J, et al. An over- view of corrosion-wear interaction forplanarizingmetallic thin films [J]. Wear, 2003, 255(7/8/9/10/11/12) : 869- 874.
  • 8蔡婷,刘玉岭,王辰伟,牛新环,陈蕊,高娇娇.TSV Cu CMP碱性抛光液及工艺[J].微纳电子技术,2013,50(11):735-738. 被引量:5
  • 9刘玉岭,檀柏梅,张楷亮.微电子技术工程[M].北京:电了工业出版社,2004:64—67.

二级参考文献20

  • 1张伟,周建伟,刘玉岭,刘承霖.硅片研磨表面状态的改善和研磨液的改进[J].半导体技术,2006,31(10):758-761. 被引量:7
  • 2TSAI T C. TSAO W C. LIN W. et al. CMP process develop?ment for the via-middle 3D TSV applications at 28 nm technology node[J]. Microelectronic Engineering. 2012. 92 (5): 29 - 33.
  • 3PARK S M. BANG H S. BANG H S. et al. Thermo-me?chanical analysis of TSV and solder interconnects for different Cu pillar bump types[J]. Microelectronic Engineering. 2012. 99 (3): 38 - 42.
  • 4HONG S C. LEE W G. KIM WJ. et al. Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking[J]. Microelectronics Reliability. 2011. 51 (12): 2228 - 2235.
  • 5TSAI C Y. LOU BY. HSU H H. et al. Current redistribution by intermetallic compounds in through-silicon-via (TSV)[J]. Mate?rials Chemistry and Physics. 2012. 132 (1): 162 -165.
  • 6RADISIC A. LUHN O. PHILIPSEN H G G. et al. Copper plating for 3D interconnects[J]. Microelectronic Enginee?ring. 2011. 88 (5): 701 -704.
  • 7Zeidler D, Stavreva Z, Plotner M, et al. Characterization of Cu chemical mechanical polishing by electrochemical investiga- tions. Microelectron Eng, 1997, 33:259.
  • 8Zantye P B, Kumar A, Sikdar A K. Chemical mechanical pla- narization for microelectronics applications. Mater Sci Eng R: Reports, 2004, 45:89.
  • 9Chen Y H, Tsai T H, Yen S C. Acetic acid and phosphoric acid adding to improve tantalum chemical mechanical polishing in hy- drogen peroxide-based slurry. Microelectron Eng, 2010, 87(2):174.
  • 10Janjam S V S B, Peethala B C, Zheng J P, et al. Electrochemical investigation of surface reactions lbr chemically promoted chem- ical mechanical polishing of TaN in tartaric acid solutions. Mater Cbem Phys, 2010, 123:521.

共引文献21

同被引文献37

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部