期刊文献+

实对称矩阵的两个特征值函数及其应用

Two Eigenvalue Functions for Real Symmetric Matrix and Their Applications
下载PDF
导出
摘要 针对较高维数矩阵的特征值求解问题,定义实对称矩阵的两个特征值函数,分别用来求解实对称矩阵的前p个最大特征值和最小特征值的和;讨论了这两个特征值函数的性质,列举这两个函数在现代控制理论等领域中的应用;最后给出了特征值函数的求解算法。数值试验表明所定义的特征值函数有效。 To solve the eigenvalue of higher dimensional matrix,two eigenvalue functions for real symmetric matrix were defined in this paper,which were used to solve the sum of the pmaximum eigenvalues and the sum of the pminimum eigenvalues of the matrix respectively.Properties of the two functions were discussed and their applications in control theory were also presented.Numerical algorithms for the above two functions were given.Results of numerical tests indicate that the defined eigenvalue functions are effective.
出处 《山东科技大学学报(自然科学版)》 CAS 2015年第5期87-91,共5页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(11241005)
关键词 实对称矩阵 特征值 线性矩阵不等式 可行点算法 收敛性 real symmetric matrix eigenvalue linear matrix inequality feasible point algorithm convergence
  • 相关文献

参考文献9

  • 1GolubGH,VanLoanCF.矩阵计算[M].袁亚湘,译.北京:高等教育出版社,2001:178-190.
  • 2Boyd J,Peres P L D,Geromel J C. A linear programming oriented procedure for quadratic stabilization of uncertain systems [J]. System Control Letters, 1989,13 (1) : 65-72.
  • 3Boyd S,E1 Ghaoui L,Feron E,et al. Linear matrix inequalities in system and control theory[M]. Society for Industrial and Applied Mathematics, 1997 : 22-32.
  • 4Boyd S, El Ghaoui L. Method of centers for minimizing generalized eigenvalues[J]. Linear Algebra and its Applications, Spe- cial Issue on Systems and Control, 1993,188 : 63-111.
  • 5Grigoriadis K M. Optimal H model reduction via linear matrix inequalities:Continuous-and discrete-time cases[J]. Systems and Control Letters, 1995,26 : 321-333.
  • 6Jolliffe l T. Principal component analysis[M]. Berlin: Springer-Verlag, 1986 .. 487-500.
  • 7Wen Z, Yin W. A feasible method for optimization with orthogonality constraints[J]. Mathematical Programming, 2013,142 (1/2) :397-434.
  • 8He S M, Li Z N, Zhang S Z. Approximation algorithms for homogeneous polynomial optimization with quadratic constraints [J]. Mathematical Programming, 2010,125 : 353-383.
  • 9Lasserre J B. Global optimization with polynomials and the problem of moments[J]. SIAM Journal on Optimization, 2001, 11:796-817.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部