期刊文献+

随机和认知不确定性量化的置信区域法 被引量:2

Confidence Region Method for Quantification of Aleatory and Epistemic Uncertainty
下载PDF
导出
摘要 针对非线性机械系统中混合不确定性量化的问题,提出了随机和认知不确定性量化的置信区域法。首先,分别用概率论方法和区间方法来处理混合不确定性中的随机不确定性和认知不确定性,得到混合不确定性的置信区域;然后,为了在时间域内对不确定性进行传播,对传统双层循环蒙特卡罗抽样方法进行了改进;最后,以非线性质量-弹簧-阻尼系统为例讨论了基于混合不确定性分析方法的有效性。结果表明,同时考虑随机不确定性和认知不确定性,有利于提高系统设计的可靠性,为非线性机械系统的设计与精度分析提供了理论依据。 Focusing on the quantification of mixed-uncertainty in nonlinear mechanical systems,a confidence region method for the quantification of aleatory and epistemic uncertainty is presented.In this method,interval analysis is used to represent epistemic uncertainty while probability theory is used to represent aleatory uncertainty,in order to obtain the confidence region of mixed uncertainties.Then,the traditional double-loop Monte Carlo sampling approach is improved to propagate uncertainties during the entire time domain.Finally,a nonlinear mass-spring-damper system is simulated to discuss the validity of the analysis method based on mixed-uncertainty.The results show that it can improve the reliability of the system′s design when both aleatory and epistemic uncertainties of the parameters are considered,and can set a theoretical foundation for the dynamic design and precision analysis of nonlinear mechanical systems.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2015年第5期908-912,992-993,共5页 Journal of Vibration,Measurement & Diagnosis
基金 重庆大学科研启动基金资助项目(0240001104412)
关键词 置信区域 随机不确定性 认知不确定性 蒙特卡罗 confidence region aleatory uncertainty epistemic uncertainty Monte Carlo
  • 相关文献

参考文献21

  • 1Schu~ller G I. On the treatment of uncertainties in structural mechanics and analysis [J]. Computers Structures, 2007,85 (5) : 235-343.
  • 2Li L, Sandu C. On the impact of cargo weight, vehicle parameters, and terrain characteristics on the predic tion of traction for off-road vehicles [J]. Journal of Terramechanics, 2007,44 ( 3 ) :221-238.
  • 3Sandu A, Sandu C, Ahmadian M. Modeling multi body systems with uncertainties. Part I: theoretical and computational aspects[J]. Multibody System Dy- namics, 2006,15(4) :373-395.
  • 4Sandu C, Sandu A, Ahmadian M. Modeling multi- body systems with uncertainties. Part Ⅱ, numerical applications[J]. Multibody System Dynamics, 2006, 15(3) :241-262.
  • 5An D, Choi J, Schmitz T L, et al. In situ monitoring and prediction of progressive joint wear using Bayesian statisties{-J]. Wear, 2011,270(11) :828- 838.
  • 6Hofer E, Kloos M, Krzykacz-Hausmann B, et al. An approximate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties [J]. Reliability Engineering & System Safety, 2002, 77(3) :229-238.
  • 7Huang Hongzhong, Zhang Xudong. Design optimiza- tion with discrete and continuous variables of aleatory and epistemic uncertainties[J]. ASME Journal of Me chanical Design, 2009,131 (3) :310061-310068.
  • 8张保强,陈国平,郭勤涛.不确定性热弹耦合梁的固有振动分析[J].振动与冲击,2012,31(19):160-164. 被引量:2
  • 9赵宽,陈建军,阎彬,马洪波.含随机参数的多体系统动力学分析[J].力学学报,2012,44(4):802-806. 被引量:5
  • 10曾开春,向锦武.高超声速飞行器飞行动力学特性不确定分析[J].航空学报,2013,34(4):798-808. 被引量:20

二级参考文献38

共引文献30

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部