期刊文献+

基于智能算法优化卡尔曼滤波器的电机转速估计 被引量:2

The Speed Estimation of Motor Using Intelligent Algorithm for Optimized Kalman Filter
下载PDF
导出
摘要 针对感应电机扩展卡尔曼滤波器转速估计中难以取得卡尔曼滤波器系统噪声矩阵和测量噪声矩阵最优值的问题,提出了一种基于改进粒子群算法优化的扩展卡尔曼滤波器转速估计方法。算法通过融合遗传算法和粒子群算法的优点,采用可调整的算法模型对粒子群算法进行改进,将改进的粒子群算法对扩展卡尔曼滤波器中的系统噪声矩阵和测量噪声矩阵进行优化处理,将优化后的卡尔曼滤波器应用于感应电机转速估计,仿真实验表明,与试探法、标准粒子群算法及遗传算法比较,改进粒子群算法优化的扩展卡尔曼滤波器能够有效提高转速估计的精度,从而提高无速度传感器矢量控制系统的控制性能。 Aiming at the problem of getting the optimal value of system noise matrix and measurement noise matrix for extended Kalman filter( EKF) which is widely used in induction motor speed estimation,a speed estimation method was presented by using improved particle swarm optimization( IPSO). By combining the advantages of genetic algorithm and particle swarm optimization, an adjustable algorithm was adopted in PSO. The EKF system noise matrix and measurement noise matrix was optimized by IPSO. Using the optimized EKF to estimate the speed of induction motor,simulation results show that the proposed method can effectively improve the speed estimation accuracy comparing with those obtained by trial and error methods,genetic algorithm( GA) and standard PSO algorithm.
作者 张秀国
出处 《实验室研究与探索》 CAS 北大核心 2015年第9期126-131,共6页 Research and Exploration In Laboratory
关键词 转速估计 无传感器矢量控制 扩展卡尔曼滤波器 粒子群算法 speed estimation sensorless vector control extended Kalman filter particle swarm algorithm
  • 相关文献

参考文献15

  • 1HASSAN K KHALIL,ELIAS G STRANGERS,SINISA JURKOVIC.Speed Observer and Reduced Nonlinear Model for Sensorless Control of Induction Motors[J].IEEE Transactions on Control Systems Technology.2009,17(2):327-339.
  • 2Shi K L,Chan T F,WONG Y K,et al.Speed estimation of an induction motor drive using an optimized extended Kalman filter[J].IEEE Transactions on Industrial Electronics,2002,49(1):124-133.
  • 3SALINDA BUYAMIN.Optimization of the Extended Kalman Filter for Speed Estimation of Induction Motor Drive[D].Newcastle:Newcastle University,2007.
  • 4ODESON B J,LUTZ A,JB.RAWLINGS.The auto covariance least squares method for estimating covariance:applications to model based control of chemical reactors[J].IEEE Transactions on Control Systems Technology,2006,14(3):532-540.
  • 5LOEBIS D,SUTTON R,CHUDLEY J.Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system[J].Control Engineering Practice,2004,12(12):1531-1539.
  • 6POWELL T D.Automated Tuning of an Extended Kalman Filter Using the Downhill Simplex Algorithm[J].Journal of guidance,control and dynamics.2002,25(5):901-908.
  • 7RAVI KUMAR JATOTH,KISHORE KUMAR T.Particle Swarm Optimization based Tuning of Extended Kalman Filter for Maneuvering Target Tracking[J].International journal of Circuits,System and Signal Processing,2009,3(3):127-136.
  • 8张勇军,王京,李华德.基于遗传算法优化的定子磁链扩展卡尔曼估计方法[J].电工技术学报,2009,24(9):64-70. 被引量:15
  • 9张寅孩,严利平,张仲超.基于遗传算法辨识噪声模型的异步电机闭环卡尔曼速度估计[J].电机与控制学报,2005,9(2):161-165. 被引量:8
  • 10尹忠刚,张瑞峰,钟彦儒,曹钰.基于抗差扩展卡尔曼滤波器的永磁同步电机转速估计策略[J].控制理论与应用,2012,29(7):921-927. 被引量:32

二级参考文献52

  • 1高钟毓,牛小骥,郭美凤.Quaternion-Based Kalman Filter for Micro-machined Strapdown Attitude Heading Reference System[J].Chinese Journal of Aeronautics,2002,15(3):171-175. 被引量:18
  • 2徐景硕,秦永元,彭蓉.自适应卡尔曼滤波器渐消因子选取方法研究[J].系统工程与电子技术,2004,26(11):1552-1554. 被引量:68
  • 3张寅孩,严利平,张仲超.基于遗传算法辨识噪声模型的异步电机闭环卡尔曼速度估计[J].电机与控制学报,2005,9(2):161-165. 被引量:8
  • 4MARKELY F L. Attitude error representations for Kalman filtering[J]. Journal of Guidance, Control, and Dynamics, 2003, 63(2): 311-317.
  • 5CHUNG D, LEE J. Strap-down INS error model for multi-position alignment[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1362 - 1366.
  • 6SHUSTER M D. Constraint in attitude estimation part I: constrained estimation[J]. Journal of the Astronautical Sciences, 2003, 51 (1): 51 - 74.
  • 7CHOUKROUN D, BAR-ITZHACK I, OSHMAN Y. A novel quaternion filter[J]. AIAA Guidance, Navigation, and Control Conference, 2002, 2: AIAA - 02 - 4460.
  • 8PSIAKI M L. The super-iterated extended Kalman filter[J]. AIAA Guidance, Navigation, and Control Conference, 2004, 8: AIAA - 04 - 5418.
  • 9SHUSTER M D. Kalman filtering of spacecraft attitude and the QUEST model[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(3): 506 - 514.
  • 10JULIER S J, UHLMAN J. A new method for the nonlinear transformation of means and co-variances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477 - 482.

共引文献100

同被引文献15

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部