期刊文献+

基于径向基神经网络的重力坝损伤识别研究 被引量:2

Research on damage identification of gravity dam based on RBF neural networks
下载PDF
导出
摘要 大坝在长期使用过程中或遭遇地震时可能出现损伤、产生裂缝,使用常规的方法诊断大坝内部裂缝损伤十分困难。为克服这一困难,提出了适用于大型水利工程结构损伤识别的两步诊断方法。以武都水库非溢流坝段为例,基于振动参数识别技术,利用径向基函数神经网络对重力坝损伤识别展开研究,先从理论研讨和数值模拟验证该方法的有效性,再结合振动台模型试验中所得的结构动力特性进行检验,对比所得的损伤识别效果。结果表明:该方法对重力坝进行损伤位置识别、损伤程度预测是可行的,有待于在实际工程应用中进行检验。 Damage and cracks may occur with dam during long operation period or when earthquakehappens. It is difficult to diagnose internal damage by conventional methods, which would leave securityhazards. A two-step damage detection method for large-scale hydraulic structures was introduced tosolve this problem. Taking non-overflow section of Wudu reservoir as an example, combined with vibra-tion parameter identification technique, research on damage identification of gravity dam based on RBFneural networks is carried out. Firstly, this paper verifies the validity of this method by theoretical re-search and numerical simulation. Then, the result of damage identification is checked by comparing withthe dynamic characteristics obtained from the shaking table model test. The results indicate that themethod is feasible to identify the position of damage and predict the extent of damage of gravity dam, butfurther study is still needed to solve practical problems.
出处 《大坝与安全》 2015年第4期6-11,共6页 Dam & Safety
基金 水利部公益性行业专项资助201401009 中国水利水电科学研究院优秀青年科技人员科学研究专项资金项目(抗基本科研1510):大型高性能地震模拟振动台参数论证及关键技术问题研究
关键词 神经网络 重力坝 损伤识别 模型试验 neural networks gravity dam damage identification model test
  • 相关文献

参考文献14

二级参考文献138

共引文献357

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部