期刊文献+

纳米氧化亚铜的形貌控制合成及光催化降解有机染料的研究进展 被引量:6

Research progress in controllable synthesis of Cu_2O with different morphologies and their property for photodegrading organic dye
下载PDF
导出
摘要 回顾了近年来不同形貌Cu2O纳米晶体、Cu2O纳米笼和纳米骨架的合成及最新研究进展,着重介绍了一维Cu2O纳米材料的合成过程,比较了不同形貌Cu2O的制备方法并指出了合成的关键步骤。比较了不同形貌Cu2O晶体的光催化性能,总结指出具有更多高活性{110}晶面或高指数晶面的Cu2O晶体有显著的光催化性能。最后总结了不同形貌Cu2O的控制合成方法,指出Cu2O的可控合成机理研究、非传统多晶面的Cu2O及具有完整晶面Cu2O纳米笼的合成是未来的研究重点;提出Cu2O在光催化领域的主要问题是稳定性较差且光催化效率不高。 This review provides a brief summary of research progress in Cu2O with different morphologies, including nanocrystals and nanocages and nanoframes. The synthesis and research development, including one-dimension Cu2O structures,were emphatically introduced. The fabrication methods of Cu2O were compared and the key steps of synthesis were pointed out. Furthermore,the properties of photogradation of different crystals were discussed,it indicated that Cu2O crystals with more photoactive {110} planes or polyhedral crystals with more high-index facet have higher photocatalytic performance for dye gradation. Finally,ways to prepare different morphology Cu2O were summarized and the mechanism of morphologically controlled synthesis and the synthesis of Cu2O with more crystal faces and nanocage with integrated crystal face are very important fundamental research. The main problems of Cu2O crystals for the photogradation application are the poor stability and low efficiency.
出处 《化工进展》 EI CAS CSCD 北大核心 2015年第11期3915-3925,共11页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(21073113) 山西省高等学校科技开发项目(2015178) 山西大同市自然基金(201405-5)项目
关键词 氧化亚铜 形貌控制合成 光催化降解 有机染料 cuprous oxide morphologically controlled synthesis photogradation organic dye
  • 相关文献

参考文献51

  • 1Mizuno K, Izaki M, Murase K, et al. Structural and electrical characterizations of electrodeposited p-type semiconductor Cu20 films[J].ZElectrochem. Soc., 2005, 152 (4): c179-c182.
  • 2Hara M, Kondo T, Komoda M, et al. Cu20 as a photocatalyst for overall water splitting trader visible irradiation[J]. Chem. Commun., 1998, 3: 357-358.
  • 3Roos A, Chibuye T, Karlsson B. Properties of oxidized copper surfaces for solar applications[J]. Sol. Energ. Mater, 1983, 7 (4): 467-480.
  • 4Ng C H B, Fan W Y. Shape evolution of Cu20 nanostructures via kinetic and thermodynamic controlled growth[J]. Z Phys. Chem. B, 2006, 110 (42): 20801-20807.
  • 5Kim J Y, Kwon Y W, Lee H J. Metal ion-assisted reshaping of Cu20 nanocrystals for catalytic applications[J]. J. Mater. Chem. A, 2013, 1 (45): 14183-14188.
  • 6Cao Y Y, Xu Y Y, Hao H Y, et al. Room temperature additive-flee synthesis of uniform CujO nanocubes with tunable size from 2011m to 500nm and photocatalytic property[J]. Mater. Lett., 2014, 114 : 88-91.
  • 7KwonYW, SoonA, Hanb H, et al. Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting[J]. J. Phys. Chem. C, 2015, 3 (1): 156-162.
  • 8Mcshane C M, Choi K S. Photocurrent enhancement of n-type CujO electrodes achieved by controlling dendritic branching growth[J]. J. Am. Chem. Soc., 2009, 131 (7): 2561-2569.
  • 9Jayaramulu K, Suresh V M, Maji T K. Stabilization of CujO nanoparticles on a 2D metal-organic framework for catalytic huisgen 1,3-dipolar cyeloaddition reaction[J]. Dalton Trans., 2015, 44 ( 1 ): 83-86.
  • 10Yuhas B D, Yang P. Nanowire-based all-oxide solar cells[J]. J. Am. Chem. Soc., 2009, 131 (10): 3756-3761.

同被引文献52

  • 1傅玲,刘洪波,邹艳红,李波.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005(4):10-14. 被引量:111
  • 2Jiang Tengfei,Xie Tengfeng,Yang Wanshi,et al.Photoelectrochemical and photovoltaic properties of p-n Cu2O homojunction films and their photocatalytic performance[J].The Journal of Physical Chemistry C,2013,117(9):4619-4624.
  • 3Yoon Sanghwa,Kim Misung,Kim In-soo,et al.Manipulation of cuprous oxide surfaces for improving their photocatalytic activity[J].Journal of Materials Chemistry A,2014,2(30):11621-11627.
  • 4Liu Lingmei,Yang Weili,Li Qi,et al.Synthesis of Cu2O nanospheres decorated with Ti O2nanoislands,their enhanced photoactivity and stability under visible light illumination,and their post-illumination catalytic memory[J].ACS Applied Materials&Interfaces,2014,6(8):5629-5639.
  • 5Zhang Weixi,Yang Xiaoning,Zhu Qian,et al.One-pot room temperature synthesis of Cu2O/Ag composite nanospheres with enhanced visible-light-driven photocatalytic performance[J].Industrial&Engineering Chemistry Research,2014,53(42):16316-16323.
  • 6Jiang Tengfei,Xie Tengfeng,Chen Liping,et al.Carrier concentration-dependent electron transfer in Cu2O/Zn O nanorod arrays and their photocatalytic performance[J].Nanoscale,2013,5(7):2938-2944.
  • 7Liu Kejia,Zhang Junying,Gao Hong,et al.Photocatalytic property of Zn O microrods modified by Cu2O nanocrystals[J].Journal of Alloys and Compounds,2013,552(5):299-303.
  • 8Wang Wenzhong,Huang Xiangwei,Wu Shuang,et al.Preparation of p-n junction Cu2O/Bi VO4heterogeneous nanostructures with enhanced visible-light photocatalytic activity[J].Applied Catalysis B:Environmental,2013,134(2):293-301.
  • 9Tu Kai,Wang Qiyang,Lu Ang,et al.Portable visible-light photocatalysts constructed from Cu2O nanoparticles and graphene oxide in cellulose matrix[J].The Journal of Physical Chemistry C,2014,118(13):7202-7210.
  • 10Tran Phong D,Batabyal Sudip K,Pramana Stevin S,et al.A cuprous oxide-reduced graphene oxide(Cu2O-r GO)composite photocatalyst for hydrogen generation:employing r GO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O[J].Nanoscale,2012,4(13):3875-3878.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部