摘要
目的:探讨脑梗死大鼠模型的神经功能缺损评分的动态变化。方法:将Zea-longa线拴法复制大脑中动脉缺血(MCAO)大鼠模型,进行提插手法针刺治疗,每12h 1次,共干预6次。以神经行为学、脑血流、梗死率、微循环、光镜等为测量指标。脑梗死大鼠模型于第12、24、36、48、60、72h针刺后进行6次神经行为学评分,借助因子分析方法,结合SPSS 17.0统计分析软件,将神经功能缺损评分结果分别与梗死率、脑血流、微循环、光镜等指标数据进行权重系数确定。结果:脑梗死大鼠的6次神经行为学评分的权重系数分别为:0.173645、0.129477、0.271616、0.125729、0.132866、0.132859。结论:对于神经行为学指标来说,针刺第3次即36h处的权重最大,在针刺第4次以后各个指标的权重变化不是很大。可见,针刺第3次即36h处是行为学指标变化的关键节点,针刺48h以后脑梗死大鼠病情逐步处于稳定状态。
Objective: To explore the dynamic change in neural function defect scores for cerebral infarction rat models. Methods: The rat models with middle cerebral artery occlusion(MCAO) were replicated by using Zea-longa method, and the rats were treated with lifting and thrusting of needle once every 12 h for 6 times. The measurement indexes were neuroethology, cerebral blood flow, infarction rate, microcirculation, and light microscope. The neuroethology assessment for cerebral infarction rats was carried out at 12 h, 24 h, 36 h, 48 h, 60 h and 72 h after acupuncturing. The weight coefficients between neural function defect scores and infarction rate, cerebral blood flow, microcirculation, and light microscope were confirmed by using factor analysis and SPSS 17.0 software. Results: The weight coefficients of 6 neuroethology assessments for cerebral infarction rats were 0.173645, 0.129477, 0.271616, 0.125729, 0.132866 and 0.132859 respectively. Conclusion: For the neuroethology indicators, the weight of the third time acupuncture is the maximum, the weight of each index does not change a lot after the fouth acupuncture. It is obvious that the third acupuncture is a key node of neuroethology indicators change, and after acupuncturing at 48 h, the condition of cerebral infarction rats was in a stable state.
出处
《中华中医药杂志》
CAS
CSCD
北大核心
2015年第11期4053-4056,共4页
China Journal of Traditional Chinese Medicine and Pharmacy
基金
国家自然科学基金项目(No.81360607)
国家重点基础研究发展计划(973计划)项目(No.2012CB518505
No.2006CB504504)~~
关键词
大脑中动脉缺血模型/脑梗死模型
神经功能缺损评分
权重系数
因子分析
Middle cerebral artery occlusion(MCAO) /cerebral infarction rat models
Neural function defect score
Weight coefficient
Factor analysis