摘要
利用具有高度解剖学细节的GHBMC有限元头部模型,建立符合患者头部在受到创伤后出现脑血肿的占位效应,并提出一种采用气体分子动力学颗粒法模拟颅脑血肿导致颅内压变化的新思路。通过医学图像软件Mimics得到患者头部血肿几何模型与病变位置,调整已验证的GHBMC成人头部有限元模型,使其符合实际患者头部病变的几何特征,之后采用气体分子动力学颗粒法模拟脑血肿引起的颅内压变化。两组仿真中颅脑侧脑室偏移量分别为4.6和5.6 mm,脑中线偏移量分别为4.3和4.1 mm,颅内压数值分别稳定在(2 680±20)和(2 618±18)Pa。实际患者颅脑侧脑室偏移量分别为4.8和4.9 mm,脑中线偏移量分别为3.7和3.9 mm,颅内压数值分别为2 800和2 666 Pa。仿真数据与实际数据基本吻合,表明采用气体分子动力学颗粒法来模拟分析血肿膨胀与颅内压增高的方法在理论上可行,为进一步临床应用提供理论依据。
The aims of this study are to develop a three-dimensional patient-specific finite element brain model with detailed anatomical structures,and proposed the corpuscular particle method to simulate the cerebral hematoma lead to changes in intracranial pressure. Geometrical data and position of the cerebral hematoma were extracted from a set of medical CT scan images. We used these data to adjust the head model of GHBMC to the geometry of head of patients. Then corpuscular particle method was used to simulate the cerebral hematoma lead to changes in intracranial pressure. Deviation of the cerebral ventricles in the two groups of simulation were4. 6 mm and 5. 6 mm,Deviation of the brain midline were 3. 7 mm and 3. 9 mm,the value of intracranial pressure were stable in 2 680 ± 20 Pa and 2 618 ± 18 Pa. The actual deviation of cerebral ventricles were4. 8 mm and 4. 9 mm,The actual deviation of brain midline were 3. 7 mm and 3. 9 mm,the actual value of intracranial pressure were 2 800 Pa and 2 666 Pa. The data of simulation was in accordance with the actual data. Results showed that the corpuscular particle method was used to simulate analysis of hematoma expansion and intracranial pressure was feasible in theory. This paper can provide the theoretical foundation for the useful clinical application.
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2015年第5期574-580,共7页
Chinese Journal of Biomedical Engineering
关键词
颅内压
气体分子动力学
有限元
脑血肿
偏移量
intracranial pressure
corpuscular particle method
finite element
cerebral hematoma
the value of deviation