期刊文献+

基于主方向的旋转不变HOG特征 被引量:2

Rotation-invariant HOG feature based on main orientation
下载PDF
导出
摘要 特征提取是目标检测与识别领域的研究热点之一,HOG(Histogram of Oriented Gradient)特征由于其对图像局部信息良好的几何和光照不变性,在行人检测、车牌和人脸识别等计算机视觉邻域得到了广泛应用,但是HOG不具有旋转不变的特性,使得该特征在实际应用中存在着一些局限性。针对该问题,提出一种具有旋转不变性的HOG特征提取方法,首先根据图像梯度信息提取主方向并设置为参考方向,接着旋转主方向至参考方向,在旋转后的图像上得到旋转不变的HOG特征。并且设计了一种面向图像匹配的相似性度量准则,它以单个图像块(Block)特征向量为基元,与待匹配图像中对应块及其邻域块特征向量的相似度共同作为度量标准,增强了旋转图像在像素平移情况下的匹配效果。实验结果表明,提出的改进HOG特征具有良好的旋转不变特性。 abstract: the feature extraction is one of the research hotspots in the field of target detection and recognition. HOG (histo- gram of oriented gradient) feature has been wi.dely used in the field of computer vision, such as pedestrian detection, license plate recognition and face identification due to its geometrical and illumination invariability for local image. However, HOG fea- ture has limitation in practical application because it has no rotation-invariant characteristic. Therefore, an extraction method of rotation-invariant HOG feature is proposed in this paper. Firstly, the main orientation is extracted according to the image gra- dient information and is set as reference direction, then the rotation-invariant HOG features are obtained from the rotated image by turning the main direction to the reference direction. A similarity measurement criterion for image-oriented matching is de- signed in this paper, in which the single image block feature vector is took as element, and is used to be the measurement stan- dard with the similarity of the block corresponding to the image under matching and its adjacent block feature factors. The experimental results show that the improved HOG feature has good rotational invariance.
出处 《现代电子技术》 北大核心 2015年第22期84-87,90,共5页 Modern Electronics Technique
关键词 梯度方向直方图(HOG) 方向标准化 图像匹配 相似性度量 HOG orientation normalization image matching similarity measurement
  • 相关文献

参考文献12

  • 1LOWE D. Object recognition from local scale-invariant features [C]// Proceedings of the 7th the IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 1150-1157.
  • 2LOWED. Distinctive image features from scale-invariant key points [J]. International Journal of Computer, 2004, 11 (60): 91-110.
  • 3BAY H, TUYTELAARS T, ESS A. Speeded up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 4DALAL N, TRIGGS B. Histograms of oriented gradients for hu- man detection [C]// Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005 : 886-893.
  • 5ZHU QIANG, AVIDAN S, MEI Y, et al. Fast human detec- tion using a cascade of histograms of oriented gradients [C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S.I.]: IEEE, 2006: 1491-1498.
  • 6BOSH A, ZISSERMAN A, MUNOZ X. Representing shape with a spatial pyramid Kemel [C]// Proceedings of the 6th ACM Intemational Conference on Image and Video Retrieval. New York, USA: ACM Press, 2007: 1091-1096.
  • 7FELZENSZWALB P. A discriminatively trained, muhiscale, deformable part model [C]// Proceedings of the 26th IEEE Con- ference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008: 1-8.
  • 8FELZENSZWALB P. Object detection with discriminatively trained part based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9) : 1627-1645.
  • 9芮挺,曹鹏,张金林,马光彦,孙仁武.基于高斯混合建模的多尺度HOG行人头肩特征检测[J].山东科技大学学报(自然科学版),2013,32(2):90-93. 被引量:3
  • 10霍亚松,张锟.非重叠低维度梯度方向直方图[J].模式识别与人工智能,2014,27(3):242-247. 被引量:2

二级参考文献25

  • 1Dalai N,Triggs D. Histograms of oriented gradients for human detection[C]//Proceedings of Conference on Computer Vi- sion and Pattern Recognition. San Diego,june 20-25,2005 : 886-893.
  • 2Zhu Q, Yeh M C, Cheng K T, et al. Fast human detection using a cascade of histograms of oriented gradients[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York,[J]une 17-22, 2006:1491-1498.
  • 3Stauffer C,Grimson W. Adaptive background mixture models for real time tracking[C]//Proceedings of IEEE InternationalConference on Compuler Vision and Pattern Recognition. Fort Collins,[J]une 23-25,1999:246-252.
  • 4Pang Y W, Yan H, Yuan Y, et al. Robust CoHOG Feature Extraction in Human-Centered Image/Video Management System. IEEE Trans on Systems, Man, and Cybernetics, 2012, 42(2): 458-468.
  • 5Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2) : 91- 110.
  • 6Tuzel O, Porikli F, Meer P. Pedestrian Detection via Classification on Riemannian Manifolds. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30 ( 10): 1713 -1727.
  • 7Pang Y W, Yuan Y, Li X L. Gabor-Based Region Covariance Matrices for Face Recognition. IEEE Trans on Circuits and System for Video Technology, 2008,18(7): 989-993.
  • 8Ahonen T, Hadid A, Pietikinen M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 12) : 2037-2041.
  • 9Calonder M, Lepetit V, Ozuysal M, et al. BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(7) : 1281-1298.
  • 10Guo Z H, Zhang L, Zhang D. A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Trans on Image Processing, 2010, 19(6): 1657-1663.

共引文献4

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部